Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Hyperthermia ; 41(1): 2307479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38314666

RESUMEN

PURPOSE: This retrospective, single-center, case-control study evaluated the safety and efficacy of Computed tomography (CT)-guided microwave ablation (MWA) for pulmonary nodules located in the right middle lobe (RML), a challenging location associated with a high frequency of complications. METHODS: Between May 2020 and April 2022, 71 patients with 71 RML pulmonary nodules underwent 71 MWA sessions. To comparison, 142 patients with 142 pulmonary nodules in non-RML were selected using propensity score matching. The technical success, technique efficacy, complications, and associated factors were analyzed. The duration of the procedure and post-ablation hospital stay were also recorded. RESULTS: Technical success was achieved in 100% of all patients. There were no significant differences in technique efficacy rates between the RML and non-RML groups (97.2% vs. 95.1%, p = 0.721). However, both major (47.9% vs. 19.7%, p < 0.001) and minor (26.8% vs. 11.3%, p = 0.004) pneumothorax were more common in the RML group than non-RML group. MWA for RML pulmonary nodules was identified as an independent risk factor for pneumothorax (p < 0.001). The duration of procedures (51.7 min vs. 35.3 min, p < 0.001) and post-ablation hospital stays (4.7 days vs. 2.8 days, p < 0.001) were longer in the RML group than non-RML group. CONCLUSIONS: CT-guided MWA for RML pulmonary nodules showed comparable efficacy compared with other lobes, but posed a higher risk of pneumothorax complications, necessitating longer MWA procedure times and extended hospital stays.


Asunto(s)
Ablación por Catéter , Neumotórax , Humanos , Estudios Retrospectivos , Estudios de Casos y Controles , Neumotórax/etiología , Microondas/uso terapéutico , Tomografía Computarizada por Rayos X/métodos , Tomografía , Ablación por Catéter/métodos
2.
Angew Chem Int Ed Engl ; 63(11): e202318885, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38243726

RESUMEN

Alkaline metal-air batteries are advantageous in high voltage, low cost, and high safety. However, metal anodes are heavily eroded in strong alkaline electrolytes, causing serious side reactions including dendrite growth, passivation, and hydrogen evolution. To address this limitation, we successfully synthesized an organic N-heterocycle compound (NHCC) to serve as an alternative anode. This compound not only exhibits remarkable stability but also possesses a low redox potential (-1.04 V vs. Hg/HgO) in alkaline environments. To effectively complement the low redox potential of the NHCC anode, we designed a dual-salt highly concentrated electrolyte (4.0 M KOH+10.0 M KCF3 SO3 ). This electrolyte expands the electrochemical stability window to 2.3 V through the robust interaction between the O atom in H2 O molecule with the K+ of KCF3 SO3 (H-O⋅⋅⋅KCF3 SO3 ). We further demonstrated the K+ uptaken/extraction storage mechanism of NHCC anodes. Consequently, the alkaline aqueous NHCC anode-air batteries delivers a high battery voltage of 1.6 V, high-rate performance (101.9 mAh g-1 at 100 A g-1 ) and long cycle ability (30,000 cycles). Our work offers a molecular engineering strategy for superior organic anode materials and develops a novel double superconcentrated conductive salt electrolyte for the construction of high-rate, long-cycle alkaline aqueous organic anode-air batteries.

3.
Angew Chem Int Ed Engl ; : e202410347, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091135

RESUMEN

Polyethylene oxide (PEO)-based all solid-state lithium metal batteries (ASSLMBs) are strongly hindered by the fast dendrite growth at the Li metal/electrolyte interface, especially under large rates. The above issue stems from the suboptimal interfacial chemistry and poor Li+ transport kinetics during cycling. Herein, a SnF2-catalyzed lithiophilic-lithiophobic gradient solid electrolyte interphase (SCG-SEI) of LixSny/LiF-Li2O is in-situ formed. The superior ionic LiF-Li2O rich upper layer (17.1 nm) possesses high interfacial energy and fast Li+ diffusion channels, wherein lithiophilic LixSny alloy layer (8.4 nm) could highly reduce the nucleation overpotential with lower diffusion barrier and promote rapid electron transportation for reversible Li+ plating/stripping. Simultaneously, the insoluble SnF2-coordinated PEO promotes the rapid Li+ ion transport in the bulk phase. As a result, an over 46.7 and 3.5 times improvements for lifespan and critical current density of symmetrical cells are achieved, respectively. Furthermore, LiFePO4-based ASSLMBs deliver a recorded cycling performance at 5 C (over 1000 cycles with a capacity retention of 80.0%). More importantly, impressive electrochemical performances and safety tests with LiNi0.8Mn0.1Co0.1O2 and pouch cell with LiFePO4, even under extreme conditions (i.e., 100 ℃), are also demonstrated, reconfirmed the importance of lithiophilic-lithiophobic gradient interfacial chemistry in the design of high-rate ASSLMBs for safety applications.

4.
Int J Biol Macromol ; 262(Pt 1): 130070, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340944

RESUMEN

This study aimed to prepare carrageenan/sodium alginate double-stabilized layers of zein nanoparticles loaded with daidzein using ultrasound technology to investigate the effect of ultrasound treatment on the stability of composite nanoparticles and encapsulation of daidzein. Compared with composite nanoparticles without ultrasound treatment, the encapsulation efficiency of nanoparticles was increased (90.36 %) after ultrasound treatment (320 W, 15 min). Ultrasound treatment reduced the particle size and PDI of nanoparticles and improved the stability and solubility of nanoparticles. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that the nanoparticles treated with ultrasound were smooth spherical and uniformly distributed. Fourier transform infrared spectroscopy (FTIR) results showed that the main forces that form nanoparticles are hydrogen bonding, electrostatic interactions and hydrophobic interactions. Fluorescence and CD chromatography showed that ultrasound treatment alters the secondary structure of zein and maintains nanoparticle stability. Encapsulation of daidzein in nanocarriers with ultrasound treatment can effectively scavenge DPPH and ABTS free radicals, improve antioxidant activity, and realize the slow release of daidzein in the gastrointestinal tract. The results showed that ultrasonication helps the construction of hydrophobic bioactives delivery carriers and provides better protection for unstable bioactives.


Asunto(s)
Isoflavonas , Nanopartículas , Zeína , Zeína/química , Carragenina , Alginatos , Nanopartículas/química , Tamaño de la Partícula
5.
Int J Biol Macromol ; 257(Pt 1): 128804, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101664

RESUMEN

In this paper, using a coprecipitation method to prepare Fe3O4 magnetic nanoparticles (Fe3O4 MNPS), magnetic dialdehyde starch nanoparticles with immobilized phospholipase A1 (MDSNIPLA) were successfully prepared by using green dialdehyde starch (DAS) instead of glutaraldehyde as the crosslinking agent. The Fe3O4 MNPS was characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), the Brunauer-Emmett-Teller (BET) surface area analysis method, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) et al. The results showed that the alkaline resistance and acid resistance of the enzyme were improved after the crosslinking of DAS. After repeated use (seven times), the relative activity of MDSNIPLA reached 56 %, and the magnetic dialdehyde starch nanoparticles (MDASN) had good carrier performance. MDSNIPLA was applied to enzymatic hydrolysis of phospholipids in the soybean oil degumming process. The results showed that the acyl transfer rate of sn-2-HPA was 14.01 %, and the content of free fatty acids was 1.144 g/100 g after 2 h reaction at 50 °C and pH 5.0 with appropriate boric acid. The immobilized enzyme has good thermal stability and storage stability, and its application of soybean oil improves the efficiency of the oil.


Asunto(s)
Enzimas Inmovilizadas , Aceite de Soja , Almidón/análogos & derivados , Espectroscopía Infrarroja por Transformada de Fourier , Enzimas Inmovilizadas/química , Fosfolipasas , Fenómenos Magnéticos
6.
Small Methods ; 8(6): e2400097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703024

RESUMEN

Calcium-ion batteries (CIBs) are considered as potential next-generation energy storage systems due to their abundant reserves and relatively low cost. However, irreversible structural changes and weak conductivity still hinder in current CIBs cathode materials. Herein, an organic molecular intercalation strategy is proposed, in which V2O5 regulated with quinoline, pyridine, and water molecules are studied as cathode material to provide fast ion diffusion channels, large storage host, and high conductivity for Ca ions. Among them, V2O5-quinoline (QVO) owns the largest interplanar spacing of 1.25 nm and the V-O chains are connected with organic molecular by hydrogen bond, which stabilizes the crystal structure. As a result, QVO exhibits a specific capacity of 168 mAh g-1 at 1 A g-1 and capacity retention of 80% after 500 cycles at 5 A g-1 than the other materials. Furthermore, X-Ray diffraction and X-ray absorption spectroscopy results reveal a reversible order-disorder transformation mechanism of Ca2+ for QVO, which can make full use of the abundant active sites for high capacity and simultaneously achieve fast reaction kinetics for excellent rate performance. These results demonstrate that QVO is a promising cathode material for CIBs, providing more choices for the development of high-performance CIBs.

7.
Adv Mater ; 36(30): e2403214, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38748854

RESUMEN

Currently, it is still challenging to develop a hydrogel electrolyte matrix that can successfully achieve a harmonious combination of mechanical strength, ionic conductivity, and interfacial adaptability. Herein, a multi-networked hydrogel electrolyte with a high entanglement effect based on gelatin/oxidized dextran/methacrylic anhydride, denoted as ODGelMA is constructed. Attribute to the Schiff base network formulation of ─RC═N─, oxidized dextran integrated gelatin chains induce a dense hydrophilic conformation group. Furthermore, addition of methacrylic anhydride through a grafting process, the entangled hydrogel achieves impressive mechanical features (6.8 MPa tensile strength) and high ionic conductivity (3.68 mS cm-1 at 20 °C). The ODGelMA electrolyte regulates the zinc electrode by circumventing dendrite growth, and showcases an adaptable framework reservoir to accelerate the Zn2+ desolvation process. Benefiting from the entanglement effect, the Zn anode achieves an outstanding average Coulombic efficiency (CE) of 99.8% over 500 cycles and cycling stability of 900 h at 5 mA cm-2 and 2.5 mAh cm-2. The Zn||I2 full cell yields an ultra-long cycling stability of 10 000 cycles with a capacity retention of 92.4% at 5 C. Furthermore, a 60 mAh single-layer pouch cell maintains a stable work of 350 cycles.

8.
Colloids Surf B Biointerfaces ; 241: 114053, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924849

RESUMEN

The integration of immunotherapy and standard chemotherapy holds great promise for enhanced anticancer effects. In this study, we prepared a pH- and glutathione (GSH)-sensitive manganese-doped mesoporous silicon (MMSNs) based drug delivery system by integrating paclitaxel (PTX) and anti-programmed cell death-ligand 1 antibody (aPD-L1), and encapsulating with polydopamine (PDA) for chemoimmunosynergic treatment of ovarian cancer cells. The nanosystem was degraded in response to the tumor weakly acidic and reductive microenvironment. The Mn2+ produced by degradation can be used as a contrast agent for magnetic resonance (MR) imaging to provide visual exposure to tumor tissue. The released PTX can not only kill tumor cells directly, but also induce immunogenic death (ICD) of tumor cells, which can play a synergistic therapeutic effect with aPD-L1. Therefore, our study is expected to provide a promising strategy for improving the efficacy of cancer immunotherapy and the detection rate of cancer.


Asunto(s)
Glutatión , Inmunoterapia , Imagen por Resonancia Magnética , Neoplasias Ováricas , Paclitaxel , Nanomedicina Teranóstica , Femenino , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/terapia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Humanos , Inmunoterapia/métodos , Concentración de Iones de Hidrógeno , Glutatión/química , Paclitaxel/farmacología , Paclitaxel/química , Paclitaxel/administración & dosificación , Indoles/química , Indoles/farmacología , Polímeros/química , Animales , Línea Celular Tumoral , Nanopartículas/química , Silicio/química , Tamaño de la Partícula , Propiedades de Superficie , Antígeno B7-H1/metabolismo , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Ratones
9.
Adv Mater ; : e2406175, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880979

RESUMEN

Microstructural engineering on nickel-rich layered oxide (NRLO) cathode materials is considered a promising approach to increase both the capacity and lifespan of lithium-ion batteries by introducing high valence-state elements. However, rational regulation on NRLO microstructures based on a deep understanding of its capacity enhancement mechanism remains challenging. Herein for the first time, it is demonstrated that an increase of 14 mAh g-1 in reversible capacity at the first cycle can be achieved via tailoring the micro and nano structure of NRLO through introducing tungsten. Aberration-corrected scanning transmission electron microscopy (STEM) characterization reveals that the formation of a modified microstructure featured as coherent spinel twin boundaries. Theoretical modeling and electrochemical investigations further demonstrate that the capacity increase mechanism is related to such coherent spinel twin boundaries, which can lower the Li+ diffusion barrier and thus allow more Li+ to participate in deeper phase transitions. Meanwhile, the surface and grain boundaries of NRLOs are found to be modified by generating a dense and uniform LiWxOy phase, which further extends its cycle life by reducing side reactions with electrolytes. This work enables a comprehensive understanding of the capacity-increased mechanism and endows the remarkable potential of microstructural engineering for capacity- and lifespan-increased NRLOs.

10.
Adv Mater ; 36(28): e2311926, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703354

RESUMEN

Traditional lithium-ion battery (LIB) anodes, whether intercalation-type like graphite or alloying-type like silicon, employing a single lithium storage mechanism, are often limited by modest capacity or substantial volume changes. Here, the kesterite multi-metal dichalcogenide (CZTSSe) is introduced as an anode material that harnesses a conversion-alloying hybrid lithium storage mechanism. Results unveil that during the charge-discharge processes, the CZTSSe undergoes a comprehensive phase evolution, transitioning from kesterite structure to multiple dominant phases of sulfides, selenides, metals, and alloys. The involvement of multi-components facilitates electron transport and mitigates swelling stress; meanwhile, it results in formation of abundant defects and heterojunctions, allowing for increased lithium storage active sites and reduced lithium diffusion barrier. The CZTSSe delivers a high specific capacity of up to 2266 mA h g-1 at 0.1 A g-1; while, maintaining a stable output of 116 mA h g-1 after 10 000 cycles at 20 A g-1. It also demonstrates remarkable low-temperature performance, retaining 987 mA h g-1 even after 600 cycles at -40 °C. When employed in full cells, a high specific energy of 562 Wh kg-1 is achieved, rivalling many state-of-the-art LIBs. This research offers valuable insights into the design of LIB electrodes leveraging multiple lithium storage mechanisms.

11.
Adv Mater ; 36(29): e2400370, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684215

RESUMEN

The advancement of aqueous zinc-ion batteries (AZIBs) is often hampered by the dendritic zinc growth and the parasitic side reactions between the zinc anode and the aqueous electrolyte, especially under extreme temperature conditions. This study unveils the performance decay mechanism of zinc anodes in harsh environments, characterized by "dead zinc" at low temperatures and aggravated hydrogen evolution and adverse by-products at elevated temperatures. To address these issues, a temperature self-adaptive electrolyte (TSAE), founded on the competitive coordination principle of co-solvent and anions, is introduced. This electrolyte exhibits a dynamic solvation capability, engendering an inorganic-rich solid electrolyte interface (SEI) at low temperatures while an organic alkyl ether- and alkyl carbonate-containing SEI at elevated temperatures. The self-adaptability of the electrolyte significantly enhances the performance of the zinc anode across a broad temperature range. A Zn//Zn symmetrical cell, based on the TSAE, showcases reversible plating/stripping exceeding 16 800 h (>700 d) at room temperature under 1 mA cm-2 and 1 mAh cm-2, setting a record of lifespan. Furthermore, the TSAE enables stable operation of the zinc full batteries across an ultrawide temperature range of -35 to 75 °C. This work illuminates a pathway for optimizing AZIBs under extreme temperatures by fine-tuning the interfacial chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA