Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 113(2): 196-205, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16791687

RESUMEN

We have reported previously that introgression by Zizania latifolia resulted in extensive DNA methylation changes in the recipient rice genome, as detected by a set of pre-selected DNA segments. In this study, using the methylation-sensitive amplified polymorphism (MSAP) method, we globally assessed the extent and pattern of cytosine methylation alterations in three typical introgression lines relative to their rice parent at approximately 2,700 unbiased genomic loci each representing a recognition site cleaved by one or both of the isoschizomers, HpaII/MspI. Based on differential digestion by the isoschizomers, it is estimated that 15.9% of CCGG sites are either fully methylated at the internal Cs and/or hemi-methylated at the external Cs in the rice parental cultivar Matsumae. In comparison, a statistically significant increase in the overall level of both methylation types was detected in all three studied introgression lines (19.2, 18.6, 19.6%, respectively). Based on comparisons of MSAP profiles between the isoschizomers within the rice parent and between parent and the introgression lines, four major groups of MSAP banding patterns are recognized, which can be further divided into various subgroups as a result of inheritance of, or variation in, parental methylation patterns. The altered methylation patterns include hyper- and hypomethylation changes, as well as inter-conversion of hemi- to full-methylation, or vice versa, at the relevant CCGG site(s). Most alterations revealed by MSAP in low-copy loci can be validated by DNA gel blot analysis. The changed methylation patterns are uniform among randomly selected individuals for a given introgression line within or among selfed generations. Sequencing on 31 isolated fragments that showed different changing patterns in the introgression line(s) allowed their mapping onto variable regions on one or more of the 12 rice chromosomes. These segments include protein-coding genes, transposon/retrotransposons and sequences with no homology. Possible causes for the introgression-induced methylation changes and their implications for genome evolution and crop breeding are discussed.


Asunto(s)
Metilación de ADN , Hibridación Genética , Oryza/genética , Citosina/metabolismo , Electroforesis en Gel de Agar
2.
Genome ; 48(1): 88-96, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15729400

RESUMEN

The isolation, physical, and genetic mapping of a group of wheat genes expressed in infected heads of Triticum aestivum 'Frontana' resistant to Fusarium head blight is reported. A cDNA library was built from heads of 'Frontana' through suppressive subtractive hybridization, to enrich for sequences induced by the pathogen Fusarium graminearum during infection. A group of 1794 clones was screened by dot blot hybridization for differential gene expression following infection. Twenty of these clones showed a strong difference in intensity of hybridization between infected and mock-inoculated wheat head samples, suggesting that they corresponded to genes induced during infection. The 20 clones were sequenced and used for mapping analysis. We determined a precise chromosomal location for 14 selected clones by using series of chromosome deletion stocks. It was shown that the 14 clones detected 90 fragments with the use of the restriction enzyme EcoRI; 52 bands were assigned to chromosome bins, whereas 38 fragments could not be assigned. The selected clones were also screened for polymorphisms on a 'Wuhan' x 'Maringa' wheat doubled haploid mapping population. One clone, Ta01_02b03, was related to a quantitative trait locus for type II resistance located on chromosome 2AL, as determined with simple sequence repeat markers on another mapping population, but did not map in the same location on our population. Another clone, Ta01_06f04, was identified by BLAST (basic local alignment search tool) search in public databases to code for a novel beta-1,3-glucanase, homologous to a major pathogenesis-related protein. This clone mapped to chromosomal regions on chromosome 3, including 3BL and 3DL, where B glucanase gene clusters are known to exist. Seven other clones, including 1 coding for an ethylene-response element binding protein and 3 for ribosomal proteins, and 4 clones corresponding to proteins with unknown function, were also mapped.


Asunto(s)
Fusarium/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología , Mapeo Cromosómico , Expresión Génica , Interacciones Huésped-Parásitos/genética , Polimorfismo de Longitud del Fragmento de Restricción
3.
Genome ; 46(4): 716-23, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12897878

RESUMEN

Allopolyploidy is preponderant in plants, which often leads to speciation. Some recent studies indicate that the process of wide hybridization and (or) genome doubling may induce rapid and extensive genetic and epigenetic changes in some plant species and genomic stasis in others. To further study this phenomenon, we analyzed three sets of synthetic allopolyploids in the Triticeae by restriction fragment length polymorphism (RFLP) using a set of expressed sequence tags (ESTs) and retrotransposons as probes. It was found that 40-64.7% of the ESTs detected genomic changes in the three sets of allopolyploids. Changes included disappearance of parental hybridization fragment(s), simultaneous appearance of novel fragment(s) and loss of parental fragment(s), and appearance of novel fragment(s). Some of the changes occurred as early as in the F1 hybrid, whereas others occurred only after allopolyploid formation. Probing with retrotransposons revealed numerous examples of disappearance of sequences. No gross chromosome structural changes or physical elimination of sequences were found. It is suggested that DNA methylation and localized recombination at the DNA level were probably the main causes for the genomic changes. Possible implications of the genomic changes for allopolyploid genome evolution are discussed.


Asunto(s)
Genoma de Planta , Hibridación Genética , Poaceae/genética , Poliploidía , Citosina/metabolismo , Metilación de ADN , Evolución Molecular , Etiquetas de Secuencia Expresada , Retroelementos
4.
Genome ; 46(3): 490-5, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12834067

RESUMEN

Restriction fragment length polymorphism (RFLP) analysis and multicolor genomic in situ hybridization (GISH) are useful tools to precisely characterize genetic stocks derived from crosses of wheat (Triticum aestivum) with Thinopyrum intermedium and Thinopyrum elongatum. The wheat x Th. intermedium derived stocks designated Z1, Z2, Z3, Z4, Z5, and Z6 were initially screened by multicolor GISH using Aegilops speltoides genomic DNA for blocking and various combinations of genomic DNA from Th. intermedium, Triticum urartu, and Aegilops tauschii for probes. The probing (GISH) results indicated that lines Z1 and Z3 were alien disomic addition lines with chromosome numbers of 2n = 44. Z2 was a substitution line in which chromosome 2D was substituted by a pair of Th. intermedium chromosomes; this was confirmed by RFLP and muticolour GISH. Z4 (2n = 44) contained two pairs of wheat--Th. intermedium translocated chromosomes; one pair involved A-genome chromosomes, the other involved D- and A- genome chromosomes. Z5 (2n = 44) contained one pair of wheat--Th. intermedium translocated chromosomes involving the D- and A-genome chromosomes of wheat. Z6 (2n = 44) contained one pair of chromosomes derived from Th. intermedium plus another pair of translocated chromosomes involving B-genome chromosomes of wheat Line Z2 was of special interest because it has some resistance to infection by Fusarium graminearum.


Asunto(s)
Cromosomas de las Plantas/genética , Hibridación Genética , Triticum/genética , Southern Blotting , Sondas de ADN , Fusarium/fisiología , Hibridación Fluorescente in Situ , Polimorfismo de Longitud del Fragmento de Restricción , Triticum/microbiología
5.
Hereditas ; 141(3): 243-51, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15703040

RESUMEN

Tos17 is a copia-like endogenous retrotransposon of rice, which can be activated by various stresses such as tissue culture and alien DNA introgression. To confirm element mobilization by introgression and to study possible structural and epigenetic effects of Tos17 insertion on its target sequences, we isolated all flanking regions of Tos17 in an introgressed rice line (Tong35) that contains minute amount of genomic DNA from wild rice (Zizania latifolia). It was found that there has been apparent but limited mobilization of Tos17 in this introgression line, as being reflected by increased but stable copy number of the element in progeny of the line. Three of the five activated copies of the element have transposed into genes. Based on sequence analysis and Southern blot hybridization with several double-enzyme digests, no structural change in Tos17 could be inferred in the introgression line. Cytosine methylation status at all seven CCGG sites within Tos17 was also identical between the introgression line and its rice parent (Matsumae)-all sites being heavily methylated. In contrast, changes in structure and cytosine methylation patterns were detected in one of the three low-copy genomic regions that flank newly transposed Tos17, and all changes are stably inherited through selfed generations.


Asunto(s)
Metilación de ADN , ADN de Plantas/genética , Oryza/genética , Retroelementos/genética , Región de Flanqueo 3'/genética , Región de Flanqueo 5'/genética , Southern Blotting , Citosina/química , ADN de Plantas/química , Genoma de Planta , Análisis de Secuencia de ADN
6.
Theor Appl Genet ; 109(1): 200-9, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15071728

RESUMEN

Tos17 is a copia-like, cryptic retrotransposon of rice, but can be activated by tissue culture. To study possible epigenetic mechanism controlling activity of Tos17, we subjected three rice lines (the parental line cv. Matsumae and two introgression lines, RZ2 and RZ35) that harbor different copies of the element to tissue culture. For each line, we investigated transcription and transposition of Tos17 in seed plants, calli and regenerated plants, cytosine-methylation status at CG and CNG positions within Tos17, effect of 5-azacytidine on methylation status and activity of Tos17, and cytosine-methylation states in genomic regions flanking original and some newly transposed copies of Tos17 in calli and regenerated plants. We found that only in introgression line RZ35 was Tos17 transcriptionally activated and temporarily mobilized by tissue culture, which was followed by repression before or upon plant regeneration. The activity and inactivity of Tos17 in calli and regenerated plants of RZ35 are accompanied by hypo- and hyper-CG methylation and hemi- and full CNG methylation, respectively, within the element, whereas immobilization of the element in the other two lines is concomitant with near-constant, full hypermethylation. Treatment with 5-azacytidine induced both CG and CNG partial hypomethylation of Tos17 in two lines (Matsumae and RZ35), which, however, was not accompanied by activation of Tos17 in any line. Heritable alteration in cytosine-methylation patterns occurred in three of seven genomic regions flanking Tos17 in calli and regenerated plants of RZ35, but in none of the five regions flanking dormant Tos17 in the other two lines.


Asunto(s)
Citosina/metabolismo , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/genética , Regulación de la Expresión Génica , Oryza/genética , Retroelementos/genética , Azacitidina/farmacología , Northern Blotting , Southern Blotting , Cartilla de ADN , Sondas de ADN , Oryza/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA