Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Theor Appl Genet ; 137(5): 110, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656338

RESUMEN

KEY MESSAGE: We developed T1AL·1PS and T1AS·1PL Robertsonian translocations by breakage-fusion mechanism based on wheat-A. cristatum 1P(1A) substitution line with smaller leaf area, shorter plant height, and other excellent agronomic traits Agropyron cristatum, a wild relative of wheat, is a valuable germplasm resource for improving wheat genetic diversity and yield. Our previous study confirmed that the A. cristatum chromosome 1P carries alien genes that reduce plant height and leaf size in wheat. Here, we developed T1AL·1PS and T1AS·1PL Robertsonian translocations (RobTs) by breakage-fusion mechanism based on wheat-A. cristatum 1P (1A) substitution line II-3-1c. Combining molecular markers and cytological analysis, we identified 16 spontaneous RobTs from 911 F2 individuals derived from the cross of Jimai22 and II-3-1c. Fluorescence in situ hybridization (FISH) was applied to detect the fusion structures of the centromeres in wheat and A. cristatum chromosomes. Resequencing results indicated that the chromosomal junction point was located at the physical position of Triticum aestivum chromosome 1A (212.5 Mb) and A. cristatum chromosome 1P (230 Mb). Genomic in situ hybridization (GISH) in pollen mother cells showed that the produced translocation lines could form stable ring bivalent. Introducing chromosome 1PS translocation fragment into wheat significantly increased the number of fertile tillers, grain number per spike, and grain weight and reduced the flag leaf area. However, introducing chromosome 1PL translocation fragment into wheat significantly reduced flag leaf area and plant height with a negative effect on yield components. The pre-breeding of two spontaneous RobTs T1AL·1PS and T1AS·1PL was important for wheat architecture improvement.


Asunto(s)
Agropyron , Cromosomas de las Plantas , Fitomejoramiento , Translocación Genética , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/anatomía & histología , Agropyron/genética , Agropyron/crecimiento & desarrollo , Cromosomas de las Plantas/genética , Hibridación Fluorescente in Situ , Fenotipo
2.
Theor Appl Genet ; 137(4): 82, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489037

RESUMEN

KEY MESSAGE: A novel locus on Agropyron cristatum chromosome 6P that increases grain number and spikelet number was identified in wheat-A. cristatum derivatives and across 3 years. Agropyron cristatum (2n = 4x = 28, PPPP), which has the characteristics of high yield with multiple flowers and spikelets, is a promising gene donor for wheat high-yield improvement. Identifying the genetic loci and genes that regulate yield could elucidate the genetic variations in yield-related traits and provide novel gene sources and insights for high-yield wheat breeding. In this study, cytological analysis and molecular marker analysis revealed that del10a and del31a were wheat-A. cristatum chromosome 6P deletion lines. Notably, del10a carried a segment of the full 6PS and 6PL bin (1-13), while del31a carried a segment of the full 6PS and 6PL bin (1-8). The agronomic characterization and genetic population analysis confirmed that the 6PL bin (9-13) brought about an increase in grain number per spike (average increase of 10.43 grains) and spikelet number per spike (average increase of 3.67) over the three growing seasons. Furthermore, through resequencing, a multiple grain number locus was mapped to the physical interval of 593.03-713.89 Mb on chromosome 6P of A. cristatum Z559. The RNA-seq analysis revealed the expression of 537 genes in the del10a young spike tissue, with the annotation indicating that 16 of these genes were associated with grain number and spikelet number. Finally, a total of ten A. cristatum-specific molecular markers were developed for this interval. In summary, this study presents novel genetic material that is useful for high-yield wheat breeding initiatives to meet the challenge of global food security through enhanced agricultural production.


Asunto(s)
Agropyron , Agropyron/genética , Fitomejoramiento , Cromosomas de las Plantas/genética , Triticum/genética , Grano Comestible/genética , Sitios Genéticos
3.
Theor Appl Genet ; 137(7): 165, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904787

RESUMEN

KEY MESSAGE: A grain weight locus from Agropyron cristatum chromosome 5P increases grain weight in different wheat backgrounds and is localized to 5PL (bin 7-12). Thousand-grain weight is an important trait in wheat breeding, with a narrow genetic basis being the main factor limiting improvement. Agropyron cristatum, a wild relative of wheat, harbors many desirable genes for wheat improvement. Here, we found that the introduction of the 5P chromosome from A. cristatum into wheat significantly increased the thousand-grain weight by 2.55-7.10 g, and grain length was the main contributor to grain weight. An increase in grain weight was demonstrated in two commercial wheat varieties, indicating that the grain weight locus was not affected by the wheat background. To identify the chromosome segment harboring the grain weight locus, three A. cristatum 5P deletion lines, two wheat-A. cristatum 5P translocation lines and genetic populations of these lines were used to evaluate agronomic traits. We found that the translocation lines harboring the long arm of A. cristatum chromosome 5P (5PL) exhibited high grain weight and grain length, and the genetic locus associated with increased grain weight was mapped to 5PL (bin 7-12). An increase in grain weight did not adversely affect other agronomic traits in translocation line 5PT2, which is a valuable germplasm resource. Overall, we identified a grain weight locus from chromosome 5PL and provided valuable germplasm for improving wheat grain weight.


Asunto(s)
Agropyron , Mapeo Cromosómico , Cromosomas de las Plantas , Grano Comestible , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Agropyron/genética , Agropyron/crecimiento & desarrollo , Cromosomas de las Plantas/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Semillas/genética , Introgresión Genética , Translocación Genética
4.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108219

RESUMEN

Wild relatives of wheat are essential gene pools for broadening the genetic basis of wheat. Chromosome rearrangements and genomic variation in alien chromosomes are widespread. Knowledge of the genetic variation between alien homologous chromosomes is valuable for discovering and utilizing alien genes. In this study, we found that 5113 and II-30-5, two wheat-A. cristatum 6P addition lines, exhibited considerable differences in heading date, grain number per spike, and grain weight. Genome resequencing and transcriptome analysis revealed significant differences in the 6P chromosomes of the two addition lines, including 143,511 single-nucleotide polymorphisms, 62,103 insertion/deletion polymorphisms, and 757 differentially expressed genes. Intriguingly, genomic variations were mainly distributed in the middle of the chromosome arms and the proximal centromere region. GO and KEGG analyses of the variant genes and differentially expressed genes showed the enrichment of genes involved in the circadian rhythm, carbon metabolism, carbon fixation, and lipid metabolism, suggesting that the differential genes on the 6P chromosome are closely related to the phenotypic differences. For example, the photosynthesis-related genes PsbA, PsbT, and YCF48 were upregulated in II-30-5 compared with 5113. ACS and FabG are related to carbon fixation and fatty acid biosynthesis, respectively, and both carried modification variations and were upregulated in 5113 relative to II-30-5. Therefore, this study provides important guidance for cloning desirable genes from alien homologous chromosomes and for their effective utilization in wheat improvement.


Asunto(s)
Agropyron , Agropyron/genética , Hibridación Genética , Cromosomas de las Plantas/genética , Fenotipo , Genómica
5.
Theor Appl Genet ; 135(6): 1951-1963, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35378599

RESUMEN

KEY MESSAGE: Introducing Agropyron cristatum chromosome 1P into common wheat can significantly reduce the plant height and leaf size, which can improve the plant architecture of common wheat. A new direction in crop breeding is the improvement of plant architecture for dense plantings to obtain higher yields. Wild relatives carry an abundant genetic variation that can increase the diversity of genes for crop genetic improvement. In this study, the A. cristatum 1P addition line, 1PS and 1PL telosomic addition lines were obtained by backcrossing the addition/substitution line II-3-1 (2n = 20'' W + 1P" + 2P") with the commercial recurrent parent cv. Jimai 22. Four continuous years of agronomic trait investigation in the genetic populations suggested that the introduction of A. cristatum chromosome 1P into wheat can significantly improve wheat plant architecture by reducing the plant height, leaf length and leaf width. A. cristatum chromosome arm 1PS reduced the plant height and leaf length of wheat, whereas introducing A. cristatum chromosome arm 1PL reduced the plant height, leaf length and leaf width. Altogether, our results demonstrated that A. cristatum chromosome 1P carries the dominant genes for small leaves and a dwarf habit for the enhancement of plant architecture in wheat. This study highlights wild relative donors as new gene resources for improving wheat plant architecture for dense planting.


Asunto(s)
Agropyron , Agropyron/genética , Cromosomas de las Plantas/genética , Hibridación Genética , Fitomejoramiento , Hojas de la Planta/genética , Translocación Genética , Triticum/genética
6.
Theor Appl Genet ; 135(8): 2861-2873, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35819492

RESUMEN

KEY MESSAGE: The powdery mildew resistance locus was mapped to A. cristatum chromosome 6PL bin (0.27-0.51) and agronomic traits evaluation indicated that this locus has potential breeding application value. Agropyron cristatum (2n = 4x = 28, PPPP) is a wild relative of wheat with an abundance of biotic and abiotic stress resistance genes and is considered one of the best exogenous donor relatives for wheat breeding. A number of wheat-A. cristatum derived lines have been generated, including addition lines, translocation lines and deletion lines. In this study, the 6P disomic addition line 4844-12 (2n = 2x = 44) was confirmed to have genetic effects on powdery mildew resistance. Four 6P deletion lines (del16a, del19b, del21 and del27) and two translocation lines (WAT638a and WAT638b), derived from radiation treatment of 4844-12, were used to further assess the 6P powdery mildew resistance locus by powdery mildew resistance assessment, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and 6P specific sequence-tagged-site (STS) markers. Collectively, the locus harboring the powdery mildew resistance gene was genetically mapped to a 6PL bin (0.27-0.51). The genetic effects of this chromosome segment on resistance to powdery mildew were further confirmed by del16a and del27 BC3F2 lines. Comprehensive evaluation of agronomic traits revealed that the powdery mildew resistance locus of 6PL (0.27-0.51) has potential application value in wheat breeding. A total of 22 resistant genes were annotated and 3 specific gene markers were developed for detecting chromatin of the resistant region based on genome re-sequencing. In summary, this study could broaden the powdery mildew resistance gene pool for wheat genetic improvements.


Asunto(s)
Agropyron , Agropyron/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Hibridación Fluorescente in Situ , Fitomejoramiento , Enfermedades de las Plantas/genética , Translocación Genética , Triticum/genética
7.
Mol Breed ; 42(3): 14, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37309409

RESUMEN

Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a relative of wheat, carries desirable genes associated with high yield, disease resistance, and stress resistance, which is an important resource for wheat genetic improvement. The long arm of A. cristatum chromosome 2P carries favorable genes conferring powdery mildew and leaf rust resistance, and two wheat-A. cristatum 2P translocation lines, 2PT3 and 2PT5, with a large segment of 2P chromatin were obtained. In this study, 2PT3 and 2PT5 translocation lines with powdery mildew and leaf rust resistance genes were used to induce translocations of different chromosomal sizes via ionizing radiation. According to cytological characterization, 10 of those plants were new wheat-A. cristatum 2P small-chromosome segment translocation lines with reduced 2P chromatin, and 6 plants represented introgression lines without visible 2P chromosomal fragments. Moreover, four lines were resistant to both powdery mildew and leaf rust, while two lines were resistant only to leaf rust.

8.
Mol Breed ; 42(8): 48, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37313513

RESUMEN

Fluorescence in situ hybridization (FISH) is a basic tool that is widely used in cytogenetic research. The detection efficiency of conventional FISH is limited due to its time-consuming nature. Oligonucleotide (oligo) probes with fluorescent labels have been applied in non-denaturing FISH (ND-FISH) assays, which greatly streamline experimental processes and save costs and time. Agropyron cristatum, which contains one basic genome, "P," is a vital wild relative for wheat improvement. However, oligo probes for detecting P-genome chromosomes based on ND-FISH assays have not been reported. In this study, according to the distribution of transposable elements (TEs) in Triticeae genomes, 94 oligo probes were designed based on three types of A. cristatum sequences. ND-FISH validation showed that 12 single oligo probes generated a stable and obvious hybridization signal on whole P chromosomes in the wheat background. To improve signal intensity, mixed probes (Oligo-pAc) were prepared by using the 12 successful probes and validated in the diploid accession A. cristatum Z1842, a small segmental translocation line and six allopolyploid wild relatives containing the P genome. The signals of Oligo-pAc covered the entire chromosomes of A. cristatum and were more intense than those of single probes. The results indicate that Oligo-pAc can replace conventional genomic in situ hybridization (GISH) probes to identify P chromosomes or segments in non-P-genome backgrounds. Finally, we provide a rapid and efficient method specifically for detecting P chromosomes in wheat backgrounds by combining the Oligo-pAc probe with the Oligo-pSc119.2-1 and Oligo-pTa535-1 probes, which can replace conventional sequential GISH/FISH assays. Altogether, we developed a set of oligo probes based on the ND-FISH assays to identify P-genome chromosomes, which can promote utilization of A. cristatum in wheat improvement programs.

9.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806373

RESUMEN

Wheat leaf rust (caused by Puccinia triticina Erikss.) is among the major diseases of common wheat. The lack of resistance genes to leaf rust has limited the development of wheat cultivars. Wheat-Agropyron cristatum (A. cristatum) 2P addition line II-9-3 has been shown to provide broad-spectrum immunity to leaf rust. To identify the specific A. cristatum resistance genes and related regulatory pathways in II-9-3, we conducted a comparative transcriptome analysis of inoculated and uninoculated leaves of the resistant addition line II-9-3 and the susceptible cultivar Fukuhokomugi (Fukuho). The results showed that there were 66 A. cristatum differentially expressed genes (DEGs) and 1389 wheat DEGs in II-9-3 during P. triticina infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and gene set enrichment analysis (GSEA) revealed that the DEGs of II-9-3 were associated with plant-pathogen interaction, MAPK signaling pathway-plant, plant hormone signal transduction, glutathione metabolism, and phenylpropanoid biosynthesis. Furthermore, many defense-related A. cristatum genes, such as two NLR genes, seven receptor kinase-encoding genes, and four transcription factor-encoding genes, were identified. Our results indicated that the key step of resistance to leaf rust involves, firstly, the gene expression of chromosome 2P upstream of the immune pathway and, secondly, the effect of chromosome 2P on the co-expression of wheat genes in II-9-3. The disease resistance regulatory pathways and related genes in the addition line II-9-3 thus could play a critical role in the effective utilization of innovative resources for leaf rust resistance in wheat breeding.


Asunto(s)
Agropyron , Basidiomycota , Agropyron/genética , Basidiomycota/genética , Cromosomas de las Plantas , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Fitomejoramiento , Enfermedades de las Plantas/genética , Transcriptoma , Triticum/genética
10.
Theor Appl Genet ; 134(11): 3759-3772, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34355268

RESUMEN

KEY MESSAGE: An enhanced grain weight locus from Agropyron cristatum chromosome 7P was verified in two wheat backgrounds, localized to the 7PS1-2 region. Novel translocation lines with this locus were evaluated. Agropyron cristatum is a wild relative of wheat that harbours elite genes for wheat improvement. The wheat-A. cristatum 7P disomic addition line II-5-1 exhibits high grain weight. Here, to dissect the genetic basis of grain weight contributed by A. cristatum chromosome 7P in wheat backgrounds, four segregated populations of the addition line were developed and evaluated in two wheat backgrounds. The results showed that A. cristatum chromosome 7P can stably and significantly increase the grain weight by approximately 2 g, mainly by increasing grain length at different grain weight levels of the wheat background. The locus for increased grain weight from chromosome 7P shows dominant inheritance independent of the wheat background. Moreover, two deletion lines and 23 translocation lines were identified by cytological methods and molecular markers, and an enlarged chromosome 7P bin map was constructed with 158 STS markers and 40 bin intervals. With the genetic populations of these deletion and translocation lines, the genetic locus of increased grain weight was narrowed down to bin 7PS1-2. Two translocation lines (7PT-A18 and 7PT-B4) with smaller 7P chromosomal segments exhibited an increase in grain weight, grain length and grain width simultaneously. These translocation lines carrying the 7PS1-2 chromosomal fragment will be valuable genetic resources for wheat grain weight improvement. Collectively, this study uncovers the grain weight locus from chromosome 7P and provides novel pre-breeding lines with enhanced grain weight.


Asunto(s)
Agropyron/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Semillas/crecimiento & desarrollo , Triticum/genética , Grano Comestible/genética , Fitomejoramiento , Translocación Genética
11.
Theor Appl Genet ; 134(12): 3873-3894, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34374829

RESUMEN

KEY MESSAGE: This study demonstrated that the aberrant transcription of DvGW2 contributed to the increased grain width and thousand-grain weight in wheat-Dasypyrum villosum T6VS·6DL translocation lines. Due to the high immunity to powdery mildew, Dasypyrum villosum 6VS has been one of the most successful applications of the wild relatives in modern wheat breeding. Along with the desired traits, side-effects could be brought when large alien chromosome fragments are introduced into wheat, but little is known about effects of 6VS on agronomic traits. Here, we found that T6VS·6DL translocation had significantly positive effects on grain weight, plant heightand spike length, and small negative effects on total spikelet number and spikelet compactness using recipient and wheat-D. villosum T6VS·6DL allohexaploid wheats, Wan7107 and Pm97033. Further analysis showed that the 6VS segment might exert direct genetic effect on grain width, then driving the increase of thousand-grain weight. Furthermore, comparative transcriptome analysis identified 2549 and 1282 differentially expressed genes (DEGs) and 2220 and 1496 specifically expressed genes (SEGs) at 6 days after pollination (DAP) grains and 15 DAP endosperms, respectively. Enrichment analysis indicated that the process of cell proliferation category was over-represented in the DEGs. Notably, two homologous genes, TaGW2-D1 and DvGW2, were identified as putative candidate genes associated with grain weight and yield. The expression analysis showed that DvGW2 had an aberrant expression in Pm97033, resulting in significantly lower total expression level of GW2 than Wan7107, which drives the increase of grain weight and width in Pm97033. Collectively, our data indicated that the compromised expression of DvGW2 is critical for increased grain width and weight in T6VS·6DL translocation lines.


Asunto(s)
Poaceae/genética , Semillas/crecimiento & desarrollo , Translocación Genética , Triticum/genética , Genes de Plantas , Fenotipo , Fitomejoramiento , Transcriptoma , Triticum/crecimiento & desarrollo
12.
Mol Breed ; 41(10): 59, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37309319

RESUMEN

Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP), one of the most important wild relatives of wheat, harbors many desirable genes for wheat genetic improvement. Development of wheat-A. cristatum translocation lines with superior agronomic traits facilitates wheat genetic improvement. In this study, 5106-DS was identified to be a wheat-A. cristatum 6P (6D) disomic substitution line using cytogenetic identification and molecular markers analysis, which displayed higher thousand-grain weight than its wheat parent Triticum aestivum cv. Fukuhokomugi (2n = 6x = 42, AABBDD). Analysis of its backcross populations indicated that there might be genes conferring increased grain weight and width on the chromosome 6P of 5106-DS. In the backcross population, we found three plants as Robertsonian translocation lines, created by chromosome centric breakage-fusion. Among them, there are one T6DS·6PL and two T6PS·6DL Robertsonian translocation lines. Additionally, the centromeres of these three translocation lines were determined to be fused centromeres of 6D and 6P using the probes pAcCR1 and pCCS1. The development of Robertsonian translocation lines would promote the utilization of A. cristatum chromosome 6P in wheat improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01251-y.

13.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681868

RESUMEN

Agropyron cristatum (2n = 4x = 28, PPPP) is an important wild relative of common wheat (Triticum aestivum L., 2n = 6x = 42). A previous report showed that the wheat-A. cristatum 6P translocation line WAT655 carrying A. cristatum 6PS (0.81-1.00) exhibited high resistance to prevalent physiological races of stripe rust (CYR32 and CYR33). In this study, three disease resistance-related transcripts, which were mapped to A. cristatum 6PS (0.81-1.00) through the analysis of specific molecular markers, were acquired from among A. cristatum full-length transcripts. The BC5F2 and BC5F2:3 genetic populations of the translocation line WAT655 were analyzed by using three disease resistance-related gene markers, A. cristatum P genome-specific markers, and fluorescence in situ hybridization (FISH). The results revealed that the introgression between A. cristatum P genome and wheat genome was observed in progenies of the genetic populations of the translocation line WAT655 and the physical positions of the three genes were considerably adjacent on A. cristatum 6PS (0.81-1.00) according to the FISH results. Additionally, kompetitive allele-specific PCR (KASP) markers of the three genes were developed to detect and acquire 24 breeding lines selected from the progenies of the distant hybridization of wheat and A. cristatum, which showed resistance to physiological races of stripe rust (CYR32 and CYR33) and other desirable agronomic traits according to the field investigation. In conclusion, this study not only provides new insights into the introgression between A. cristatum P genome and wheat genome but also provides the desirable germplasms for breeding practice.


Asunto(s)
Agropyron/genética , Resistencia a la Enfermedad/genética , Introgresión Genética/genética , Genoma de Planta , Triticum/genética , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Análisis Citogenético , Marcadores Genéticos , Hibridación Fluorescente in Situ , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Puccinia/patogenicidad
14.
Plant J ; 95(6): 976-987, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29932270

RESUMEN

Common wheat is an allohexaploid (BBAADD) that originated from the hybridization and polyploidization of the diploid Aegilops tauschii (DD) with the allotetraploid Triticum turgidum (BBAA). Phenotypic changes often arise with the formation and evolution of allopolyploid wheat, but little is known about the evolution of root traits in different wheat species with varying ploidy levels. Here, we reported that the lateral root number on the primary root (LRNPR) of synthetic and natural allohexaploid wheats (BBAADD) is significantly higher than that of their allotetraploid (BBAA) and diploid (AA and SS) progenitors, but is much lower than that of their diploid (DD) progenitors. The expression of the wheat gene TaLBD16, an ortholog of the Arabidopsis LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16), which is involved in lateral root development in Arabidopsis, was positively correlated with the LRNPR in diploid and allopolyploid wheats. In natural and synthetic allohexaploid wheats, the transcript of the TaLBD16 from the D genome (TaLBD16-D) was relatively more abundant compared with TaLBD16-A and TaLBD16-B. Consistent with the observed variation in LRNPR, the divergence in the expression of TaLBD16 homoeologous genes occurred before the formation of polyploidy wheat. Collectively, our observations indicate that the D genome played a crucial role in the increased lateral root number of allohexaploid wheats compared with their allotetraploid progenitors, and that TaLBD16-D was one of the key genes involved in the formation of lateral root number during wheat evolution.


Asunto(s)
Genoma de Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Triticum/genética , Diploidia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Genoma de Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Poliploidía , Triticum/crecimiento & desarrollo
15.
BMC Genomics ; 20(1): 1025, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31881839

RESUMEN

BACKGROUND: Agropyron cristatum (L.) Gaertn. (2n = 4x = 28; genomes PPPP) is a wild relative of common wheat (Triticum aestivum L.) and provides many desirable genetic resources for wheat improvement. However, there is still a lack of reference genome and transcriptome information for A. cristatum, which severely impedes functional and molecular breeding studies. RESULTS: Single-molecule long-read sequencing technology from Pacific Biosciences (PacBio) was used to sequence full-length cDNA from a mixture of leaves, roots, stems and caryopses and constructed the first full-length transcriptome dataset of A. cristatum, which comprised 44,372 transcripts. As expected, the PacBio transcripts were generally longer and more complete than the transcripts assembled via the Illumina sequencing platform in previous studies. By analyzing RNA-Seq data, we identified tissue-enriched transcripts and assessed their GO term enrichment; the results indicated that tissue-enriched transcripts were enriched for particular molecular functions that varied by tissue. We identified 3398 novel and 1352 A. cristatum-specific transcripts compared with the wheat gene model set. To better apply this A. cristatum transcriptome, the A. cristatum transcripts were integrated with the wheat genome as a reference sequence to try to identify candidate A. cristatum transcripts associated with thousand-grain weight in a wheat-A. cristatum translocation line, Pubing 3035. CONCLUSIONS: Full-length transcriptome sequences were used in our study. The present study not only provides comprehensive transcriptomic insights and information for A. cristatum but also proposes a new method for exploring the functional genes of wheat relatives under a wheat genetic background. The sequence data have been deposited in the NCBI under BioProject accession number PRJNA534411.


Asunto(s)
Agropyron/genética , Grano Comestible/genética , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Carácter Cuantitativo Heredable , Transcriptoma , Mapeo Cromosómico , Cromosomas de las Plantas , Biología Computacional/métodos , Bases de Datos Genéticas , Anotación de Secuencia Molecular
16.
Theor Appl Genet ; 132(10): 2815-2827, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31309244

RESUMEN

KEY MESSAGE: An enhanced-grain number per spike locus from Agropyron cristatum 6PL was mapped onto 6PL (0.27-0.51) via deletion mapping, and its effect was further verified by evaluating a newly created translocation line. Agropyron cristatum (2n = 4x = 28, PPPP) is an important wild relative of common wheat and carries many desirable yield-related traits. The wheat-A. cristatum 6P disomic addition line 4844-12 exhibited high grain number per spike (GNS), high spikelet number per spike (SNS), and high kernel number per spikelet (KNS). In this study, five A. cristatum 6P deletion lines, five wheat-A. cristatum 6P translocation lines, and genetic populations of these lines were used to map the enhanced-GNS locus from A. cristatum chromosome 6P, which were genotyped via genomic in situ hybridization, fluorescence in situ hybridization, or molecular markers. According to the evaluation of the agronomic traits in four growing seasons (2014-2015, 2015-2016, 2016-2017, and 2017-2018), we found that the deletion lines and the translocation lines carrying the long arm of A. cristatum chromosome 6P (6PL) exhibited high GNS, SNS, and KNS, and the enhanced-GNS locus was ultimately mapped onto 6PL (0.27-0.51). To verify the localization results, we created a new translocation line WAT650a (T5BL•5BS-6PL) that carried 6PL (0.35-0.42); this line exhibited higher GNS and SNS than the recipient parent Fukuhokomugi (Fukuho). Collectively, the enhanced-GNS locus of A. cristatum 6PL can be important for improving yield traits in common wheat; the translocation lines with the enhanced-GNS locus can serve as novel and valuable germplasm resources for wheat breeding.


Asunto(s)
Agropyron/genética , Cromosomas de las Plantas/genética , Grano Comestible/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Eliminación de Secuencia , Translocación Genética , Triticum/genética , Agropyron/crecimiento & desarrollo , Mapeo Cromosómico , Grano Comestible/anatomía & histología , Grano Comestible/genética , Marcadores Genéticos , Genotipo , Hibridación Genética , Triticum/crecimiento & desarrollo
17.
Planta ; 246(5): 1019-1028, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28770336

RESUMEN

MAIN CONCLUSION: Altered expression of the TaRSL2 gene was positively correlated with variation in root hair length during allopolyploid wheat evolution, and overexpression of TaRSL2 in Arabidopsis increases root hair length. Root hairs aid nutrient and water uptake and anchor the plant in the soil. Allopolyploid wheats display significant growth vigor in terms of root hair length compared to their diploid progenitors, but little is known about the molecular basis of variation in root hair length during wheat allopolyploidization. Here, we isolated three orthologs of the Arabidopsis root hair gene ROOT HAIR DEFECTIVE SIX-LIKE 2 (AtRSL2) in allohexaploid wheat, designated TaRSL2-4A, TaRSL2-4B and TaRSL2-4D. The deduced polypeptides of these three TaRSL2 homoeologous genes shared high similarity, and a conserved basic helix-loop-helix (bHLH) domain was present in their C-terminal regions. Notably, the expression of TaRSL2 was positively correlated with root hair length of wheat accessions with different ploidy levels. Moreover, ectopic overexpression of TaRSL2-4D in Arabidopsis could increase root hair length. We found that the transcript levels of TaRSL2 homoeologous genes dynamically changed during allopolyploid wheat evolution, implicating the complexity of the underlying molecular mechanism. Collectively, we propose that altered expression of the TaRSL2 gene contributed to variation in root hair length in allopolyploid wheats.


Asunto(s)
Proteínas de Plantas/metabolismo , Triticum/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diploidia , Expresión Génica , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transgenes , Triticum/crecimiento & desarrollo
18.
Planta ; 245(2): 425-437, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27832372

RESUMEN

MAIN CONCLUSION: Different types of P genome sequences and markers were developed, which could be used to analyze the evolution of P genome in Triticeae and identify precisely wheat- A. cristatum introgression lines. P genome of Agropyron Gaertn. plays an important role in Triticeae and could provide many desirable genes conferring high yield, disease resistance, and stress tolerance for wheat genetic improvement. Therefore, it is significant to develop specific sequences and functional markers of P genome. In this study, 126 sequences were isolated from the degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) products of microdissected chromosome 6PS. Forty-eight sequences were identified as P genome-specific sequences by dot-blot hybridization and DNA sequences analysis. Among these sequences, 22 displayed the characteristics of retrotransposons, nine and one displayed the characteristics of DNA transposons and tandem repetitive sequence, respectively. Fourteen of 48 sequences were determined to distribute on different regions of P genome chromosomes by fluorescence in situ hybridization, and the distributing regions were as following: all over P genome chromosomes, centromeres, pericentromeric regions, distal regions, and terminal regions. We compared the P genome sequences with other genome sequences of Triticeae and found that the similar sequences of the P genome sequences were widespread in Triticeae, but differentiation occurred to various extents. Additionally, thirty-four molecular markers were developed from the P genome sequences, which could be used for analyzing the evolutionary relationship among 16 genomes of 18 species in Triticeae and identifying P genome chromatin in wheat-A. cristatum introgression lines. These results will not only facilitate the study of structure and evolution of P genome chromosomes, but also provide a rapid detecting tool for effective utilization of desirable genes of P genome in wheat improvement.


Asunto(s)
Agropyron/genética , ADN de Plantas/genética , Genoma de Planta , Triticum/genética , Cromosomas de las Plantas , Evolución Molecular , Marcadores Genéticos , Hibridación Fluorescente in Situ , Poaceae/genética , Reacción en Cadena de la Polimerasa/métodos
19.
Int J Mol Sci ; 18(11)2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-29137188

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat-A. cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A. cristatum 6P, ten translocation lines, five deletion lines and the BC2F2 and BC3F2 populations of two wheat-A. cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A. cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.


Asunto(s)
Agropyron/genética , Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Genes de Plantas , Triticum/genética , Agropyron/inmunología , Agropyron/microbiología , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Triticum/inmunología , Triticum/microbiología
20.
Genomics ; 106(2): 129-36, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25889708

RESUMEN

Agropyron cristatum is a wild grass of the tribe Triticeae that is widely grown in harsh environments. As a wild relative of wheat, A. cristatum carries many resistance genes that could be used to broaden the genetic diversity of wheat. Here, we report the transcriptome sequencing of the flag leaf and young spike tissues of a representative tetraploid A. cristatum. More than 90 million reads from the two tissues were assembled into 73,664 unigenes. All unigenes were functionally annotated against the KEGG, COG, and Gene Ontology databases and predicted long non-coding RNAs. Pfam prediction demonstrates that A. cristatum carries an abundance of stress resistance genes. The extent of specific genes and rare alleles make A. cristatum a vital genetic reservoir for the improvement of wheat. Altogether, the available gene resources in A. cristatum facilitate efforts to harness the genetic diversity of wild relatives to enhance wheat.


Asunto(s)
Agropyron/genética , Genes de Plantas , Transcriptoma , Agropyron/crecimiento & desarrollo , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Variación Genética , Genómica , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , ARN Mensajero/química , Análisis de Secuencia de ARN , Estrés Fisiológico/genética , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA