RESUMEN
We propose a large viewing angle integral imaging 3D display system based on a symmetrical compound lens array (SCLA). The display system comprises a high-resolution 2D display panel, an SCLA, and a light shaping diffuser. The high-resolution 2D display panel presents an elemental image array, the SCLA modulates the light rays emitted from the 2D display panel to form 3D images in space, and the light shaping diffuser eliminates the gaps between 3D pixels of the 3D images. We find that the lateral aberration is a crucial factor that affects the resolution of the reconstructed 3D image. The symmetrical structure of the SCLA enables a reduced focal length and the elimination of lateral aberration, improving the viewing angle and the 3D image resolution simultaneously. The experimental results confirm that the proposed display system increases the viewing angle to 68.6°, achieving a comparable resolution of the full field of view while maintaining a simple structure.
RESUMEN
The design and intentional construction of crystalline materials containing two clusters with redox properties in one framework still remains challenging. Linking oxidative polyoxometalate (POM) clusters and a reductive cyclic trinuclear copper complex (Cu-CTC) to prepare stable catalysts is rarely reported. Herein, we successfully obtained two new polyoxometalate-based metal-organic compounds (POMOCs) [CuII3(PyCA)3(µ3-OH)(ß-Mo8O26)0.5(H2O)2]·5H2O (1), [CuII3(PyCA)3(µ3-OH)]2(CuIIW12O40)[CuII(H2O)6] (2) (PyCA = 1H-pyrazole-4-carbaldehyde) by enabling precursors of Cu-CTC and POM cocrystallization in one pot via hydrothermal method. The [ß-Mo8O26]4- cluster in compound 1 combined with Cu-CTC units to form a 1D structure, and the [CuW12O40]6- unit in compound 2 linked two Cu-CTC units to form a sandwich-like 0D structure. Also, Cu-CTC CuI3(PyCA)3·H2O (Cu3) was synthesized for performance comparison. A series of characterizations indicate that compound 1 is more conducive to electron transfer than compound 2. In addition, compounds 1 and 2 can act as bifunctional catalysts for the electrochemical detection and photocatalytic reduction of Cr(VI). Particularly, the photoreduction rates of Cr(VI) by compounds 1 and 2 are 96.7% and 96.3% for only 10 and 14 min under visible light, respectively, and it is better than that of Cu3 and most other reported photocatalysts. Furthermore, the active sites and mechanisms for electrochemical detection and photocatalytic reduction of Cr(VI) were discussed.
RESUMEN
Membrane distillation (MD) has great potential in the management of hypersaline water for zero liquid discharge (ZLD) due to its high salinity tolerance. However, the membrane wetting issue significantly restricts its practical application. In this study, a composite membrane tailored for extreme concentrations and even crystallization of hypersaline water is synthesized by coating a commercial hydrophobic porous membrane with a composite film containing a dense polyamide layer, a cation exchange layer (CEL), and an anion exchange layer (AEL). When used in direct contact MD for treating a 100 g L-1 NaCl hypersaline solution, the membrane achieves supersaturation of feed solution and a salt crystal yield of 38.0%, with the permeate concentration at <5 mg L-1. The composite membrane also demonstrates ultrahigh antiwetting stability in 360 h of long-term operation. Moreover, ion diffusion analysis reveals that the ultrahigh wetting resistance of the composite membrane is attributed to the bipolar AEL and CEL that eliminate ion crossover. The literature review elucidates that the composite membrane is superior to state-of-the-art membranes. This study demonstrates the great potential of the composite membrane for direct crystallization of hypersaline water, offering a promising approach to filling the gap between reverse osmosis and conventional thermal desalination processes for ZLD application.
Asunto(s)
Cristalización , Destilación , Membranas Artificiales , Salinidad , Agua/química , Purificación del Agua/métodosRESUMEN
OBJECTIVE: This study aimed to develop and validate the Salt Reduction Behavior Scale (SRBS) to measure the behavior of hypertensive Chinese individuals in adhering to salt reduction practices. METHODS: The SRBS was constructed based on the Health Belief Model, consisting of five constructs: knowledge, perceived severity, perceived benefits, perceived barriers, and cues to action. Data were collected from 2,082 hypertensive patients in Beijing, China, who completed a questionnaire administered through an online platform. Kaiser-Meyer-Olkin (KMO) test was used to assess the adequacy of the sample and the Bartlett's test of sphericity to examine the factorability of the dataset. Confirmatory Factor Analysis (CFA) was used to assess the structural validity and reliability of the SRBS. RESULTS: The KMO analysis yielded a notably elevated value of 0.95, indicating that the data was highly suitable for Exploratory Factor Analysis (EFA). Bartlett's test of sphericity yielded a statistically significant test statistic (P < 0.001). The 32-item SRB questionnaire demonstrated strong internal consistency with a Cronbach's alpha coefficient of 0.923. A second-order Confirmatory Factor Analysis (CFA) revealed that, after removing the unrelated construct of barriers, SRB could be represented by four sub-constructs: knowledge, severity, benefits, and action. The final version of the SRBS consists of 21 items. These items displayed high factor loadings, indicating a strong relationship between the items and their respective sub-constructs. The discriminant validity analysis revealed that the SRBS sub-constructs were distinct from each other. The SRBS scores were positively correlated with self-reported salt reduction practices. This demonstrates that individuals with higher SRBS scores were more likely to engage in actual salt reduction behaviors, indicating concurrent validity. CONCLUSION: The results illustrate that the Salt Reduction Behavior Scale is a robust and comprehensive instrument for assessing salt reduction behavior among hypertensive Chinese individuals. The scale's specific sub-constructs provide a detailed understanding of their knowledge, attitudes, and practices related to salt consumption. Healthcare professionals and policymakers can utilize this tool to tailor interventions and educational programs to encourage healthier dietary habits, thereby reducing the risk of cardiovascular diseases in China.
Asunto(s)
Hipertensión , Humanos , Masculino , Femenino , Persona de Mediana Edad , Hipertensión/psicología , Encuestas y Cuestionarios/normas , China , Reproducibilidad de los Resultados , Análisis Factorial , Adulto , Psicometría , Conocimientos, Actitudes y Práctica en Salud , Conductas Relacionadas con la Salud , Anciano , Cloruro de Sodio Dietético , Modelo de Creencias sobre la Salud , Pueblos del Este de AsiaRESUMEN
Aryl sulfides are common and ubiquitous motifs in natural products and pharmaceuticals. Presented herein is the first example of the synthesis of diaryl sulfide derivatives via dehydroaromatization under simple basic conditions. Dehydroaromatization reactions between indolines or cyclohexanones with aryl thiols are performed in an environmentally benign manner by the use of air (molecular oxygen) as the oxidant, with producing water as the only byproduct. The methodology provides a simple and practical route to diaryl sulfides with wide functional groups in good to excellent yields. Preliminary mechanistic studies suggest that a radical process is involved in the transformation.
RESUMEN
Glacial debris flow is a common natural disaster, and its frequency has been increasing in recent years due to the continuous retreat of glaciers caused by global warming. To reduce the damage caused by glacial debris flows to human and physical properties, glacier susceptibility assessment analysis is needed. Most research efforts consider the effect of existing glacier area and ignore the effect of glacier ablation volume change. In this paper, we consider the impact of glacier ablation volume change to investigate the susceptibility of glacial debris flow. The susceptibility to mudslide was evaluated by taking the glacial mudslide-prone ditch of G318 Linzhi section of Sichuan-Tibet Highway as the research object. First, by using a simple band ratio method with manual correction, we produced a glacial mudslide remote sensing image dataset, and second, we proposed a deep-learning-based approach using a weight-optimized glacial mudslide semantic segmentation model for accurately and automatically mapping the boundaries of complex glacial mudslide-covered remote sensing images. Then, we calculated the ablation volume by the change in glacier elevation and ablation area from 2015 to 2020. Finally, glacial debris flow susceptibility was evaluated based on the entropy weight method and Topsis method with glacial melt volume in different watersheds as the main factor. The research results of this paper show that most of the evaluation indices of the model are above 90%, indicating that the model is reasonable for glacier boundary extraction, and remote sensing images and deep learning techniques can effectively assess the glacial debris flow susceptibility and provide support for future glacial debris flow disaster prevention.
RESUMEN
Abscisic acid receptors (ABR) play crucial roles in transducing the ABA signaling initiated by osmotic stresses, which has a significant impact on plant acclimation to drought by modulating stress-related defensive physiological processes. We characterized TaPYL5, a member of the ABR family in wheat (Triticum aestivum), as a mediator of drought stress adaptation in plants. The signals derived from the fusion of TaPYL5-GFP suggest that the TaPYL5 protein was directed to various subcellular locations, namely stomata, plasma membrane, and nucleus. Drought stress significantly upregulated the TaPYL5 transcripts in roots and leaves. The biological roles of ABA and drought responsive cis-elements, specifically ABRE and recognition sites MYB, in mediating gene transcription under drought conditions were confirmed by histochemical GUS staining analysis for plants harbouring a truncated TaPYL5 promoter. Yeast two-hybrid and BiFC assays indicated that TaPYL5 interacted with TaPP2C53, a clade A member of phosphatase (PP2C), and the latter with TaSnRK2.1, a kinase member of the SnRK2 family, implying the formation of an ABA core signaling module TaPYL5/TaPP2C53/TaSnRK2.1. TaABI1, an ABA responsive transcription factor, proved to be a component of the ABA signaling pathway, as evidenced by its interaction with TaSnRK2.1. Transgene analysis of TaPYL5 and its module partners, as well as TaABI1, revealed that they have an effect on plant drought responses. TaPYL5 and TaSnRK2.1 positively regulated plant drought acclimation, whereas TaPP2C53 and TaABI1 negatively regulated it. This coincided with the osmotic stress-related physiology shown in their transgenic lines, such as stomata movement, osmolytes biosynthesis, and antioxidant enzyme function. TaPYL5 significantly altered the transcription of numerous genes involved in biological processes related to drought defense. Our findings suggest that TaPYL5 is one of the most important regulators in plant drought tolerance and a valuable target for engineering drought-tolerant cultivars in wheat.
Asunto(s)
Sequías , Triticum , Triticum/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismoRESUMEN
BACKGROUND: Abscisic acid receptors (ABR) involve transduction of the ABA signaling in plants, impacting largely on stress-defensive physiological processes and plant osmotic stress response. In this study, we characterized TaPYL4, a gene of ABR family in T. aestivum, in mediating plant drought tolerance given scarcity of functional characterization on wheat ABR members thus far. RESULTS: TaPYL4 harbors nine conserved domains shared by its PYL counterparts, targeting onto plasma membrane and nucleus after endoplasmic reticulum assortment. TaPYL4 interacts with TaPP2C2 whereas the latter with TaSnRK2.1, which establish a core module of the ABA signaling pathway. TaPYL4 expression was upregulated in root and aerial tissues upon drought stress. Overexpressing TaPYL4 conferred plants improved growth traits whereas knockdown expression of target gene alleviated growth feature compared with wild type under drought treatment. The TaPYL4-enhanced drought adaptation associates gene function in positively regulating stomata movement, osmolyte biosynthesis, and root system architecture (RSA) establishment. Expression analysis on the P5CS family genes involving proline biosynthesis indicated that TaP5CS1 exerts critical roles in promoting osmolytes accumulation in drought-challenged TaPYL4 lines. TaPIN9, a PIN-FORMED gene modulating cellular auxin translocation, was validated to function as a crucial mediator in defining RSA establishment underlying TaPYL4 regulation. Transcriptome analysis revealed that TaPYL4 controls transcription of numerous genes, which impact on physiological processes associated with 'biological process', 'molecular component', and 'cellular process'. Moreover, the differentially expressed genes mediated by TaPYL4 were closely related to stress defensive pathways. CONCLUSIONS: Our investigation suggested that TaPYL4 acts as a positive regulator in plant drought tolerance and a valuable target for engineering drought-tolerant cultivars in T. aestivum.
Asunto(s)
Sequías , Triticum , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Triticum/metabolismoRESUMEN
Depth of field (DOF) and resolution are mutually restricted in integral imaging (II) display. To overcome the trade-offs, we propose an II display system that simultaneously enhances the DOF and resolution. The system consists of a transmissive mirror device (TMD), a semi-transparent mirror (STM), and two II display units. Each II display unit consists of a 4K display screen and a micro-lens array (MLA). Benefiting from the parallel placement of the TMD and the STM, two central depth planes are reconstructed, which effectively enhances the DOF. Meanwhile, the resolution in the overlapping DOF region is increased to two times due to the interpolation of the light field information from two II display units. The impact of the distance between the two II display units and the TMD on the 3D image quality is analyzed. In geometric optics, a distance between the II two display units and the TMD is optimized to eliminate ghost images. In wave optics, a distance is optimized to eliminate 3D pixel gaps by exploiting the diffraction effect of the TMD. Both the geometric and wave optics are considered simultaneously to obtain a high-quality 3D image without ghost images and 3D pixel gaps. A DOF and resolution-enhanced II display system is developed, and the experimental results verify its feasibility.
RESUMEN
We propose a system to eliminate the graininess of an integral imaging 3D display by using a transmissive mirror device (TMD). The proposed system consists of a 2D display, a micro-lens array (MLA), and a TMD. The TMD comprises square apertures with mirror-reflective inner wall. The light rays pass through the square aperture to form a diffraction spot, and the diffraction light intensity has a Sinc-function distribution. Therefore, the TMD can be used as an optical low-pass filter. In a certain imaging range, the mainlobe of the Sinc-function distribution is almost unchanged. The TMD has the property of a volumetric optical low-pass filter. It can interpolate the interval between discrete 3D pixels. Therefore, the TMD can be used to eliminate the graininess. The resolution of the 3D image is improved by 2.12 times. The experimental results verify the feasibility of the proposed system.
RESUMEN
A four-mode 2D/3D switchable display using a 1D/2D convertible liquid crystal (LC) lens array is proposed in this paper. The LC lens array is composed of two orthogonal LC lens arrays, with a λ/2 film in the middle to rotate the polarization by 90°. Based on the LC lens array, a four-mode 2D/3D switchable display is realized, which is switchable between the turn-off and turn-on states: when the operating voltage V1 = 0, V2 = 0, the display operates in mode I, which is 2D display; when the operating voltage V1 = 0, V2 = 0, the display operates in mode II, and the 3D display effect is in x direction; when the operating voltage V1 = 0, V2 = 0, the display operates in mode III, and the 3D display effect is in y direction; when the operating voltage V1 = 0, V2 = 0, the display operates in mode IV, the 3D display effect is in x-y plane. Experimental results indicate that the LC lens array has simple fabrication process, low operating voltage (â¼5.4V), and short focal length. Moreover, based on the designed LC lens array, the 2D/3D switchable display shows no moiré pattern.
RESUMEN
Rheumatoid arthritis (RA) is an autoimmune disease targeting the synovium. Previous studies have found that IgD may be a potential target for the treatment of RA. We designed a new type of fusion protein, hIgDFc-Ig (DG), to block the binding of IgD to IgD receptor (IgDR). In this study, we found that DG has a significant therapeutic effect in mice with collagen-induced arthritis (CIA). DG improved the claw of irritation symptoms in these mice, inhibited the pathological changes in spleen and joint tissues, and had a moderating effect on B cell subsets at different inflammatory stages. Moreover, DG could also decrease the levels of IgA, IgD, IgM and IgG subtypes of immunoglobulin in the serum of mice with CIA. In vitro, B cell antigen receptor (BCR) knockout Ramos cells were established using the CRISPR/Cas9 technology to further study the activation of BCR signalling by IgD and the effect of DG. We found that the therapeutic effect of DG in mice with CIA may be achieved by inhibiting the activation of BCR signalling by IgD, which may be related to the activation of Igß. In summary, DG may be a potential biological agent for the treatment of RA and it has broad application prospects in the future.
Asunto(s)
Artritis Experimental/tratamiento farmacológico , Inmunoglobulinas/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Agammaglobulinemia Tirosina Quinasa/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/farmacología , Ratones , Ratones Endogámicos DBA , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores Fc/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/patología , Quinasa Syk/metabolismo , Timo/efectos de los fármacos , Factor de Transcripción ReIA/metabolismoRESUMEN
OBJECTIVE: Androgenetic alopecia (AGA), a common alopecia, is often accompanied by abnormal expression of multiple miRNAs. This study aims to investigate abnormally expressed miRNAs in patients with AGA and their specific molecular mechanism. METHODS: miRNA microarray profiling and qRT-PCR validation were used to screen and verify abnormally expressed miRNAs in patients with AGA. Human hair follicles (HFs) were treated with different concentrations of dihydrotestosterone (DHT, 10-5, 10-6, 10-7 and 10-8 mol/L) for 10 days. The effects of DHT on HF growth, proliferation, and miRNA expression in cultured HFs were investigated using immunofluorescence staining and qRT-PCR. Moreover, human dermal papilla cells (HDPCs) were treated/transfected with a Wnt/ß-catenin pathway activator and/or miR-133b mimic, and then the CCK-8 assay was used to evaluate HDPC proliferation. qRT-PCR and Western blotting were used to measure the expression of Versican, ALP and ß-catenin RESULTS: miRNA microarray profiling identified 43 miRNAs that were significantly differentially expressed in AGA patients, and qRT-PCR verified that 8 miRNAs were significantly differentially expressed. The expression of miR-133b was abnormally high in AGA patients. DHT (10-5 mol/L) inhibited human HF growth and upregulated miR-133b expression, and DHT (10-7 mol/L) induced human HF growth and downregulated miR-133b expression. HDPC proliferation was inhibited, and the expression of ß-catenin was downregulated in the miR-133b mimic-transfected group compared with the control group (P < 0.05). Wnt/ß-catenin pathway activator treatment significantly promoted HDPC proliferation and upregulated the expression of ß-catenin (P < 0.05). In addition, the proliferation of HDPCs was not significantly different between the group cotreated with a Wnt/ß-catenin pathway activator and miR-133b mimic, and the control group (P > 0.05), but the expression of Versican and ALP was suppressed in the cotreatment group (P < 0.05) CONCLUSION: Our data indicated that patients with androgenic alopecia have specific miRNA expression profiles and that the abnormal expression of miR-133b may inactivate the Wnt/ß-catenin pathway and ultimately regulate hair growth.
Asunto(s)
Alopecia/patología , Biomarcadores/metabolismo , Proliferación Celular , Regulación de la Expresión Génica , Folículo Piloso/crecimiento & desarrollo , MicroARNs/genética , Adulto , Alopecia/genética , Alopecia/metabolismo , Apoptosis , Estudios de Casos y Controles , Células Cultivadas , Perfilación de la Expresión Génica , Folículo Piloso/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Vía de Señalización WntRESUMEN
This work proposed an innovative and energy-efficient Donnan Dialysis (DD) and Osmotic Distillation (OD) hybrid process for alkali-driven ammonium recovery from wastewater. The efficiency and feasibility of ammonium removal and recovery from synthetic and real wastewater using NaOH and waste alkali were investigated. Ammonium in the feed first transported across the cation exchange membrane and accumulated in the receiver chamber. It is then deprotonated as ammonia, passing through the gas permeable membrane and finally is fixed as ammonium salt in the acid chamber. Our results indicated that employing waste alkali (red mud leachate) as driving solution led to excellent ammonium recovery performances (recovery efficiency of >80%), comparable to those of NaOH solution. When the initial ammonium concentration was 5 and 50 mM, the waste alkali driven DD-OD process achieved acceptable NH4+-N flux density of 16.8 and 169 g N m-2 d-1, at energy cost as low as 8.38 and 2.06 kWh kg-1 N, respectively. Since this alkali driven DD-OD hybrid process is based on solute concentration (or partial pressure) gradient, it could be an energy-effective technology capable of treating wastewaters containing ammonium using waste alkali to realize nutrients recovery in a sustainable manner.
Asunto(s)
Compuestos de Amonio , Destilación , Álcalis , Membranas Artificiales , Ósmosis , Diálisis Renal , Aguas ResidualesRESUMEN
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects not only joints but also multiple organ systems including cardiovascular system. Endothelial dysfunction plays an important role in cardiovascular diseases (CVD). In RA, endothelial dysfunction exists at both the macrovascular and the microvascular levels, which is a precursor to vasculitis. This study aimed to investigate the pathogenesis of vasculitis and the therapeutic effect of CP-25 on vasculitis in high-fat diet (HFD) collagen-induced arthritis (CIA) rats. Experimental groups were divided into normal group, HFD group, CIA group, HFD CIA group, CP-25 group and MTX group. In vitro, IL-17A was used to stimulate human umbilical vein endothelial cells (HUVECs), and then CP-25 was used to intervene. Results showed that CP-25 reduced global scoring (GS), arthritis index (AI), and swollen joint count (SJC) scores, improved histopathological score, reduced T cells percentage, and decreased IL-17A and ICAM-1 levels. Besides, CP-25 reduced the expression of p-STAT3 to normal levels in vascular of HFD CIA rats. In vitro, IL-17A promoted the expression of p-JAK1, p-JAK2, p-JAK3, pSTAT3, and ICAM-1, and CP-25 inhibited the expression of p-JAK1, p-JAK2, p-JAK3, p-STAT3, and ICAM-1. In conclusion, CP-25 might inhibit endothelial cell activation through inhibiting IL-17A/JAK/STAT3 signaling pathway, which improves vasculitis in HFD CIA rats.
Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Dieta Alta en Grasa/métodos , Células Endoteliales/metabolismo , Glucósidos/uso terapéutico , Interleucina-17/metabolismo , Monoterpenos/uso terapéutico , Vasculitis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Glucósidos/farmacología , Humanos , Masculino , Monoterpenos/farmacología , Ratas , Transducción de SeñalRESUMEN
Cancer-associated fibroblasts (CAFs) play an important role in tumorigenesis, development, and migration. Eliminating CAFs or reducing their tumor-promoting activity is beneficial for tumor immunotherapy. Curcumin is a natural polyphenol derived from turmeric, which has been shown to inhibit the growth of many types of tumor. In this study, we explored the effect of curcumin on prostate-CAFs and its underlying molecular mechanism. The effect of curcumin on CAFs was measured using MTT assay and plate colony formation assay. Flow cytometry was used to detect cell apoptosis, ROS, Cell cycle, and mitochondrial membrane potential (ΔΨm) changes after curcumin treatment. Western Blot was used to detect changes in expression levels of related proteins in CAFs after curcumin stimulation. Colorimetry was used to detect the change of caspase 3 activity. The mRNA levels of Bims, Puma, ATF4 and CHOP were determined by qRT-PCR. We found that curcumin induced the apoptosis and cell cycle arrest of CAFs, which is mainly caused by the ROS-mediated endoplasmic reticulum stress pathway. For mechanism, the up-regulation of ROS caused by curcumin triggers endoplasmic reticulum stress of CAFs through the PERK-eIF2α-ATF4 axis. Our study suggests that curcumin selectively inhibits prostate-CAFs by inducing apoptosis and cell cycle arrest in G2-M phase, indicating a novel application of curcumin in tumor therapy.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Curcumina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Proliferación Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células PC-3RESUMEN
IgD-Fc-Ig fusion protein, a new biological agent, is constructed by linking a segment of human IgD-Fc with a segment of human IgG1-Fc, which specifically blocks the IgD-IgDR pathway and selectively inhibits the abnormal proliferation, activation, and differentiation of T cells. In this study we investigated whether IgD-Fc-Ig exerted therapeutic effects in collagen-induced arthritis (CIA) rats. CIA rats were treated with IgD-Fc-Ig (1, 3, and 9 mg/kg) or injected with biological agents etanercept (3 mg/kg) once every 3 days for 40 days. In the PBMCs and spleen lymphocytes of CIA rats, both T and B cells exhibited abnormal proliferation; the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1(CD4+IFN-γ+), and Th17(CD4+IL-17+) were significantly increased, whereas the Treg (CD4+CD25+Foxp3+) cell percentage was decreased. IgD-Fc-Ig administration dose-dependently decreased the indicators of arthritis; alleviated the histopathology of spleen and joint; reduced serum inflammatory cytokines levels; decreased the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1 (CD4+IFN-γ+), and Th17(CD4+IL-17+); increased Treg (CD4+CD25+Foxp3+) cell percentage; and down-regulated the expression of key molecules in IgD-IgDR-Lck-NF-κB signaling (p-Lck, p-ZAP70, p-P38, p-NF-κB65). Treatment of normal T cells with IgD (9 µg/mL) in vitro promoted their proliferation. Co-treatment with IgD-Fc-Ig (0.1-10 µg/mL) dose-dependently decreased IgD-stimulated T cell subsets percentages and down-regulated the IgD-IgDR-Lck-NF-κB signaling. In summary, this study demonstrates that IgD-Fc-Ig alleviates CIA and regulates the functions of T cells through inhibiting IgD-IgDR-Lck-NF-κB signaling.
Asunto(s)
Artritis Experimental/inmunología , Inmunoglobulina D/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , FN-kappa B/metabolismo , Receptores de IgG/inmunología , Transducción de Señal , Linfocitos T/inmunología , Ácido Acético , Animales , Artritis Experimental/inducido químicamente , Inmunoglobulina D/química , Fragmentos Fc de Inmunoglobulinas/química , Masculino , Ratas , Ratas Wistar , Receptores de IgG/metabolismoRESUMEN
To understand the evolution and molecular characteristics of Jiangxi H9N2 viruses, we isolated 17 viruses in 2011 and analyzed their characteristics. Phylogenetic analyses revealed that their hemagglutinin genes originate from JS/1/00-like sublineage, neuraminidase genes originate from BJ/94-like sublineage, PB1, PA, NP, and NS genes all come from SH/F/98-like sublineage, PB2 genes originate from ST/163/04-like sublineage, while M genes come from G1-like sublineage. Genotype analysis showed that our isolates were classified as genotype 57. Molecular analyses indicated that our strains contained specific sites characteristic of low-pathogenic viruses. The current study once again highlights the necessity for continued surveillance of novel H9N2 viruses.
Asunto(s)
Evolución Molecular , Genotipo , Subtipo H9N2 del Virus de la Influenza A/clasificación , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Animales , China , Subtipo H9N2 del Virus de la Influenza A/genética , Filogenia , Aves de Corral , Proteínas Virales/genéticaRESUMEN
An integral imaging-based 2D/3D convertible display system is proposed by using a lens-array holographic optical element (LAHOE), a polymer dispersed liquid crystal (PDLC) film, and a projector. The LAHOE is closely attached to the PDLC film to constitute a projection screen. The LAHOE is used to realize integral imaging 3D display. When the PDLC film with an applied voltage is in the transparent state, the projector projects a Bragg matched 3D image, and the display system works in 3D mode. When the PDLC film without an applied voltage is in the scattering state, the projector projects a 2D image, and the display system works in 2D mode. A prototype of the integral imaging-based 2D/3D convertible display is developed, and it provides 2D/3D convertible images properly.