Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 36(7): 1406-16, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27199448

RESUMEN

OBJECTIVE: Angiogenesis, the process of building complex vascular structures, begins with sprout formation on preexisting blood vessels, followed by extension of the vessels through proliferation and migration of endothelial cells. Based on the potential therapeutic benefits of preventing angiogenesis in pathological conditions, many studies have focused on the mechanisms of its initiation as well as control. However, how the extension of vessels is terminated remains obscure. Thus, we investigated the negative regulation mechanism. APPROACH AND RESULTS: We report that increased intracellular calcium can induce dephosphorylation of the endothelial receptor tyrosine kinase Tie2. The calcium-mediated dephosphorylation was found to be dependent on Tie2-calmodulin interaction. The Tyr1113 residue in the C-terminal end loop of the Tie2 kinase domain was mapped and found to be required for this interaction. Moreover, mutation of this residue into Phe impaired both the Tie2-calmodulin interaction and calcium-mediated Tie2 dephosphorylation. Furthermore, expressing a mutant Tie2 incapable of binding to calmodulin or inhibiting calmodulin function in vivo causes unchecked growth of the vasculature in Xenopus. Specifically, knockdown of Tie2 in Xenopus embryo retarded the sprouting and extension of intersomitic veins. Although human Tie2 expression in the Tie2-deficient animals almost completely rescued the retardation, the Tie2(Y1113F) mutant caused overgrowth of intersomitic veins with strikingly complex and excessive branching patterns. CONCLUSIONS: We propose that the calcium/calmodulin-dependent negative regulation of Tie2 can be used as an inhibitory signal for vessel growth and branching to build proper vessel architecture during embryonic development.


Asunto(s)
Señalización del Calcio , Calmodulina/metabolismo , Embrión no Mamífero/irrigación sanguínea , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Receptor TIE-2/metabolismo , Xenopus/embriología , Animales , Células CHO , Cricetulus , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genotipo , Células HEK293 , Humanos , Mutación , Fenotipo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptor TIE-2/genética , Transfección , Tirosina , Xenopus/genética , Xenopus/metabolismo
2.
J Biol Chem ; 289(45): 31330-40, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25237190

RESUMEN

Angiopoietin-2 (Ang-2) not only regulates angiogenesis by binding to its well known receptor Tie2 on endothelial cells but also controls sprouting of Tie2-negative angiogenic endothelial cells and invasion of Tie2-negative non-endothelial cells by binding to integrins. However, the molecular mechanism of the Ang-2/integrin association has been unclear. In this study, we found that the Gln-362 residue of Ang-2 was essential for binding to α5ß1 integrin. A Q362E Ang-2 mutant, which still bound to Tie2, failed to associate with α5ß1 integrin and was unable to activate the integrin downstream signaling of focal adhesion kinase. In addition, unlike wild-type Ang-2, the Q362E Ang-2 mutant was defective in mediating invasion of Tie2-negative glioma or Tie2-positive endothelial cells. Furthermore, the tailpiece domain of the α5 subunit in α5ß1 integrin was critical for binding to Ang-2. Taken together, these results provide a novel insight into the mechanism of integrin regulation by Ang-2, which contributes to tumor invasion and endothelial cell migration in a Tie2-independent manner.


Asunto(s)
Angiopoyetina 2/metabolismo , Células Endoteliales/citología , Glutamina/metabolismo , Integrina alfa5beta1/metabolismo , Neoplasias/metabolismo , Receptor TIE-2/metabolismo , Animales , Células CHO , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Cricetinae , Cricetulus , Regulación de la Expresión Génica , Humanos , Integrinas/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/patología , Neovascularización Patológica , Plásmidos/metabolismo , Estructura Terciaria de Proteína
3.
Neurobiol Dis ; 82: 22-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26019056

RESUMEN

We examined the potential benefit of gene therapy in a mouse model of tuberous sclerosis complex (TSC) in which there is embryonic loss of Tsc1 (hamartin) in brain neurons. An adeno-associated virus (AAV) vector (serotype rh8) expressing a tagged form of hamartin was injected into the cerebral ventricles of newborn pups with the genotype Tsc1(cc) (homozygous for a conditional floxed Tsc1 allele) SynI-cre(+), in which Tsc1 is lost selectively in neurons starting at embryonic day 12. Vector-treated Tsc1(cc)SynIcre(+) mice showed a marked improvement in survival from a mean of 22 days in non-injected mice to 52 days in AAV hamartin vector-injected mice, with improved weight gain and motor behavior in the latter. Pathologic studies showed normalization of neuron size and a decrease in markers of mTOR activation in treated as compared to untreated mutant littermates. Hence, we show that gene replacement in the brain is an effective therapeutic approach in this mouse model of TSC1. Our strategy for gene therapy has the advantages that therapy can be achieved from a single application, as compared to repeated treatment with drugs, and that AAV vectors have been found to have minimal to no toxicity in clinical trials for other neurologic conditions. Although there are many additional issues to be addressed, our studies support gene therapy as a useful approach in TSC patients.


Asunto(s)
Encéfalo/patología , Terapia Genética/métodos , Esclerosis Tuberosa/terapia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ratones , Mutación , Neuronas/patología , Fenotipo , Resultado del Tratamiento , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa
4.
J Biol Chem ; 287(36): 30063-72, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22798074

RESUMEN

Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1(Δ8,9) and Phr1(Magellan), with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1(Δ8,9) and Phr1(Magellan) mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1(Δ8,9) and Phr1(Magellan) mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1(Δ8,9/Mag)), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.


Asunto(s)
Axones/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas/metabolismo , Sinapsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Caenorhabditis elegans , Proteínas Portadoras/genética , Cuerpo Calloso/metabolismo , Drosophila , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Mutantes , Complejos Multiproteicos , Proteínas del Tejido Nervioso/genética , Estructura Terciaria de Proteína , Proteínas/genética , Transducción de Señal , Sinapsis/genética , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/fisiología
5.
Clin Cancer Res ; 15(6): 1940-6, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19276265

RESUMEN

PURPOSE: Chordomas are rare, malignant bone neoplasms in which the pathogenic mechanisms remain unknown. Interestingly, tuberous sclerosis complex (TSC) is the only syndrome in which the incidence of chordomas has been described. We previously reported the pathogenic role of the TSC genes in TSC-associated chordomas. In this study, we investigated whether aberrant TSC/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway is associated with sporadic chordomas. EXPERIMENTAL DESIGN: We assessed the status of mTORC1 signaling in primary tumors/cell lines of sacral chordomas and further examined upstream of mTORC1 signaling, including the PTEN (phosphatase and tensin homologue deleted on chromosome ten) tumor suppressor. We also tested the efficacy of the mTOR inhibitor rapamycin on signaling and growth of chordoma cell lines. RESULTS: Sporadic sacral chordoma tumors and cell lines examined commonly displayed hyperactivated Akt and mTORC1 signaling. Strikingly, expression of PTEN, a negative regulator of mTORC1 signaling, was not detected or significantly reduced in chordoma-derived cell lines and primary tumors. Furthermore, rapamycin inhibited mTORC1 activation and suppressed proliferation of chordoma-derived cell line. CONCLUSIONS: Our results suggest that loss of PTEN as well as other genetic alterations that result in constitutive activation of Akt/mTORC1 signaling may contribute to the development of sporadic chordomas. More importantly, a combination of Akt and mTORC1 inhibition may provide clinical benefits to chordoma patients.


Asunto(s)
Cordoma/etiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Proliferación Celular/efectos de los fármacos , Cordoma/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosfohidrolasa PTEN/análisis , Fosfohidrolasa PTEN/fisiología , Proteínas , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/fisiología
6.
Cell Signal ; 20(6): 1084-91, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18308511

RESUMEN

The tumor suppressor tuberin, encoded by the Tuberous Sclerosis Complex (TSC) gene TSC2, negatively regulates the mammalian target of rapamycin (mTOR) pathway, which plays a key role in the control of cell growth and proliferation. In addition to naturally occurring mutations, several kinases including Akt, RSK1, and ERK are known to phosphorylate and inactivate tuberin. We demonstrate a novel mechanism of tuberin inactivation through ubiquitination by Pam, a putative RING finger-containing E3 ubiquitin (Ub) ligase in mammalian cells. We show that Pam associates with E2 ubiquitin-conjugating enzymes, and tuberin can be ubiquitinated by Pam through its RING finger domain. Tuberin ubiquitination is independent of its phosphorylation by Akt, RSK1, and ERK kinases. Pam is also self-ubiquitinated through its RING finger domain. Moreover, the TSC1 protein hamartin, which forms a heterodimer with tuberin, protects tuberin from ubiquitination by Pam. However, TSC1 fails to protect a disease-associated missense mutant of TSC2 from ubiquitination by Pam. Furthermore, Pam knockdown by RNA interference (RNAi) in rat primary neurons elevates the level of tuberin, and subsequently inhibits the mTOR pathway. Our results provide novel evidence that Pam can function as an E3 Ub ligase toward tuberin and regulate mTOR signaling, suggesting that Pam can in turn regulate cell growth and proliferation as well as neuronal function through the TSC/mTOR pathway in mammalian cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Animales , Células Cultivadas , Humanos , Oxigenasas de Función Mixta/química , Datos de Secuencia Molecular , Mutación Missense , Neuronas/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR , Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
7.
Sci Adv ; 5(2): eaau6732, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30788433

RESUMEN

Choriocapillary loss is a major cause of neovascular age-related macular degeneration (NV-AMD). Although vascular endothelial growth factor (VEGF) blockade for NV-AMD has shown beneficial outcomes, unmet medical needs for patients refractory or tachyphylactic to anti-VEGF therapy exist. In addition, the treatment could exacerbate choriocapillary rarefaction, necessitating advanced treatment for fundamental recovery from NV-AMD. In this study, Tie2 activation by angiopoietin-2-binding and Tie2-activating antibody (ABTAA) presents a therapeutic strategy for NV-AMD. Conditional Tie2 deletion impeded choriocapillary maintenance, rendering eyes susceptible to NV-AMD development. Moreover, in a NV-AMD mouse model, ABTAA not only suppressed choroidal neovascularization (CNV) and vascular leakage but also regenerated the choriocapillaris and relieved hypoxia. Conversely, VEGF blockade degenerated the choriocapillaris and exacerbated hypoxia, although it suppressed CNV and vascular leakage. Together, we establish that angiopoietin-Tie2 signaling is critical for choriocapillary maintenance and that ABTAA represents an alternative, combinative therapeutic strategy for NV-AMD by alleviating anti-VEGF adverse effects.


Asunto(s)
Neovascularización Coroidal/etiología , Neovascularización Coroidal/patología , Degeneración Macular/etiología , Degeneración Macular/patología , Receptor TIE-2/genética , Activación Transcripcional , Factores de Edad , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hipoxia/genética , Hipoxia/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/fisiopatología , Ratones , Modelos Biológicos , Unión Proteica , Receptor TIE-2/metabolismo , Regeneración , Transducción de Señal , Activación Transcripcional/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Trastornos de la Visión/genética , Trastornos de la Visión/parasitología
8.
Nat Commun ; 8: 15296, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28508859

RESUMEN

The blood-retinal barrier (BRB) consists of tightly interconnected capillary endothelial cells covered with pericytes and glia, but the role of the pericytes in BRB regulation is not fully understood. Here, we show that platelet-derived growth factor (PDGF)-B/PDGF receptor beta (PDGFRß) signalling is critical in formation and maturation of BRB through active recruitment of pericytes onto growing retinal vessels. Impaired pericyte recruitment to the vessels shows multiple vascular hallmarks of diabetic retinopathy (DR) due to BRB disruption. However, PDGF-B/PDGFRß signalling is expendable for maintaining BRB integrity in adult mice. Although selective pericyte loss in stable adult retinal vessels surprisingly does not cause BRB disintegration, it sensitizes retinal vascular endothelial cells (ECs) to VEGF-A, leading to upregulation of angiopoietin-2 (Ang2) in ECs through FOXO1 activation and triggering a positive feedback that resembles the pathogenesis of DR. Accordingly, either blocking Ang2 or activating Tie2 greatly attenuates BRB breakdown, suggesting potential therapeutic approaches to reduce retinal damages upon DR progression.


Asunto(s)
Barrera Hematorretinal/metabolismo , Retinopatía Diabética/metabolismo , Pericitos/metabolismo , Vasos Retinianos/metabolismo , Angiopoyetina 2/metabolismo , Animales , Permeabilidad Capilar/genética , Retinopatía Diabética/genética , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/genética
9.
Cancer Res ; 64(3): 812-6, 2004 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-14871804

RESUMEN

Tuberous sclerosis complex is caused by mutations in tumor suppressor genes TSC1 or TSC2 and is characterized by the presence of hamartomas in many organs. Although tuberous sclerosis complex is a tumor suppressor gene syndrome with classic "second hits" detectable in renal tumors, conventional genetic analysis has not revealed somatic inactivation of the second allele in the majority of human brain lesions. We demonstrate a novel mechanism of post-translational inactivation of the TSC2 protein, tuberin, by physiologically inappropriate phosphorylation, which is specific to tuberous sclerosis complex-associated brain lesions. Additional analysis shows that tissue specificity is due to abnormal activation of the Akt and mitogen-activated protein kinase pathways in brain but not in renal tumors. These results have widespread implications for understanding the tissue specificity of tumor suppressor gene phenotypes.


Asunto(s)
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas , Proteínas Represoras/metabolismo , Esclerosis Tuberosa/metabolismo , Astrocitoma/embriología , Neoplasias Encefálicas/enzimología , Activación Enzimática , Humanos , MAP Quinasa Quinasa 1 , MAP Quinasa Quinasa 2 , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/biosíntesis , Fosforilación , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Proteínas Represoras/biosíntesis , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR , Esclerosis Tuberosa/enzimología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor
10.
Cancer Cell ; 30(6): 953-967, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27960088

RESUMEN

A destabilized tumor vasculature leads to limited drug delivery, hypoxia, detrimental tumor microenvironment, and even metastasis. We performed a side-by-side comparison of ABTAA (Ang2-Binding and Tie2-Activating Antibody) and ABA (Ang2-Blocking Antibody) in mice with orthotopically implanted glioma, with subcutaneously implanted Lewis lung carcinoma, and with spontaneous mammary cancer. We found that Tie2 activation induced tumor vascular normalization, leading to enhanced blood perfusion and chemotherapeutic drug delivery, markedly lessened lactate acidosis, and reduced tumor growth and metastasis. Moreover, ABTAA favorably altered the immune cell profile within tumors. Together, our findings establish that simultaneous Tie2 activation and Ang2 inhibition form a powerful therapeutic strategy to elicit a favorable tumor microenvironment and enhanced delivery of a chemotherapeutic agent into tumors.


Asunto(s)
Anticuerpos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Glioma/tratamiento farmacológico , Receptor TIE-2/metabolismo , Ribonucleasa Pancreática/antagonistas & inhibidores , Animales , Anticuerpos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Neoplasias de la Mama/irrigación sanguínea , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Dacarbazina/administración & dosificación , Dacarbazina/análogos & derivados , Sinergismo Farmacológico , Femenino , Glioma/irrigación sanguínea , Humanos , Ratones , Trasplante de Neoplasias , Unión Proteica/efectos de los fármacos , Temozolomida , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos
11.
Sci Transl Med ; 8(335): 335ra55, 2016 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27099174

RESUMEN

Protection of endothelial integrity has been recognized as a frontline approach to alleviating sepsis progression, yet no effective agent for preserving endothelial integrity is available. Using an unusual anti-angiopoietin 2 (ANG2) antibody, ABTAA (ANG2-binding and TIE2-activating antibody), we show that activation of the endothelial receptor TIE2 protects the vasculature from septic damage and provides survival benefit in three sepsis mouse models. Upon binding to ANG2, ABTAA triggers clustering of ANG2, assembling an ABTAA/ANG2 complex that can subsequently bind and activate TIE2. Compared with a conventional ANG2-blocking antibody, ABTAA was highly effective in augmenting survival from sepsis by strengthening the endothelial glycocalyx, reducing cytokine storms, vascular leakage, and rarefaction, and mitigating organ damage. Together, our data advance the role of TIE2 activation in ameliorating sepsis progression and open a potential therapeutic avenue for sepsis to address the lack of sepsis-specific treatment.


Asunto(s)
Anticuerpos/uso terapéutico , Receptor TIE-2/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Angiopoyetina 2/metabolismo , Animales , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Infiltración Neutrófila/efectos de los fármacos , Ribonucleasa Pancreática/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
Mol Cancer Res ; 10(5): 649-59, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22426462

RESUMEN

Inactivating mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene results in the development of schwannomas and meningiomas. Using NF2-deficient meningioma cells and tumors, together with the normal cellular counterparts that meningiomas derive, arachnoid cells, we identified merlin as a novel negative regulator of mTOR complex 1 (mTORC1). We now show that merlin positively regulates the kinase activity of mTORC2, a second functionally distinct mTOR complex, and that downstream phosphorylation of mTORC2 substrates, including Akt, is reduced upon acute merlin deficiency in cells. In response to general growth factor stimulation, Akt signaling is attenuated in merlin RNA interference-suppressed human arachnoid and Schwann cells by mechanisms mediated by hyperactive mTORC1 and impaired mTORC2. Moreover, Akt signaling is impaired differentially in a cell type-dependent manner in response to distinct growth factor stimuli. However, contrary to activation of mTORC1, the attenuated mTORC2 signaling profiles exhibited by normal arachnoid and Schwann cells in response to acute merlin loss were not consistently reflected in NF2-deficient meningiomas and schwannomas, suggesting additional genetic events may have been acquired in tumors after initial merlin loss. This finding contrasts with another benign tumor disorder, tuberous sclerosis complex, which exhibits attenuated mTORC2 signaling profiles in both cells and tumors. Finally, we examined rapamycin, as well as the mTOR kinase inhibitor, Torin1, targeting both mTOR complexes to identify the most efficacious class of compounds for blocking mTOR-mediated signaling and proliferation in merlin-deficient meningioma cells. These studies may ultimately aid in the development of suitable therapeutics for NF2-associated tumors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neurofibromina 2/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Meningioma/genética , Meningioma/metabolismo , Complejos Multiproteicos , Naftiridinas/farmacología , Neurilemoma/genética , Neurilemoma/metabolismo , Neurofibromina 2/deficiencia , Neurofibromina 2/genética , Proteína Oncogénica v-akt/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Interferencia de ARN , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo
14.
Mol Cell Biol ; 29(15): 4250-61, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19451225

RESUMEN

Inactivating mutations of the neurofibromatosis 2 (NF2) gene, NF2, result predominantly in benign neurological tumors, schwannomas and meningiomas, in humans; however, mutations in murine Nf2 lead to a broad spectrum of cancerous tumors. The tumor-suppressive function of the NF2 protein, merlin, a membrane-cytoskeleton linker, remains unclear. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a novel mediator of merlin's tumor suppressor activity. Merlin-deficient human meningioma cells and merlin knockdown arachnoidal cells, the nonneoplastic cell counterparts of meningiomas, exhibit rapamycin-sensitive constitutive mTORC1 activation and increased growth. NF2 patient tumors and Nf2-deficient mouse embryonic fibroblasts demonstrate elevated mTORC1 signaling. Conversely, the exogenous expression of wild-type merlin isoforms, but not a patient-derived L64P mutant, suppresses mTORC1 signaling. Merlin does not regulate mTORC1 via the established mechanism of phosphoinositide 3-kinase-Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase-mediated TSC2 inactivation and may instead regulate TSC/mTOR signaling in a novel fashion. In conclusion, the deregulation of mTORC1 activation underlies the aberrant growth and proliferation of NF2-associated tumors and may restrain the growth of these lesions through negative feedback mechanisms, suggesting that rapamycin in combination with phosphoinositide 3-kinase inhibitors may be therapeutic for NF2.


Asunto(s)
Proliferación Celular , Neurofibromina 2/metabolismo , Factores de Transcripción/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Aracnoides/citología , Aracnoides/efectos de los fármacos , Aracnoides/metabolismo , Ciclo Celular , Línea Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Citometría de Flujo , Humanos , Immunoblotting , Diana Mecanicista del Complejo 1 de la Rapamicina , Meningioma/genética , Meningioma/metabolismo , Meningioma/patología , Ratones , Ratones Noqueados , Complejos Multiproteicos , Neurilemoma/genética , Neurilemoma/metabolismo , Neurilemoma/patología , Neurofibromina 2/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Transfección , Células Tumorales Cultivadas
15.
Nat Med ; 14(8): 843-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18568033

RESUMEN

Tuberous sclerosis is a single-gene disorder caused by heterozygous mutations in the TSC1 (9q34) or TSC2 (16p13.3) gene and is frequently associated with mental retardation, autism and epilepsy. Even individuals with tuberous sclerosis and a normal intelligence quotient (approximately 50%) are commonly affected with specific neuropsychological problems, including long-term and working memory deficits. Here we report that mice with a heterozygous, inactivating mutation in the Tsc2 gene (Tsc2(+/-) mice) show deficits in learning and memory. Cognitive deficits in Tsc2(+/-) mice emerged in the absence of neuropathology and seizures, demonstrating that other disease mechanisms are involved. We show that hyperactive hippocampal mammalian target of rapamycin (mTOR) signaling led to abnormal long-term potentiation in the CA1 region of the hippocampus and consequently to deficits in hippocampal-dependent learning. These deficits included impairments in two spatial learning tasks and in contextual discrimination. Notably, we show that a brief treatment with the mTOR inhibitor rapamycin in adult mice rescues not only the synaptic plasticity, but also the behavioral deficits in this animal model of tuberous sclerosis. The results presented here reveal a biological basis for some of the cognitive deficits associated with tuberous sclerosis, and they show that treatment with mTOR antagonists ameliorates cognitive dysfunction in a mouse model of this disorder.


Asunto(s)
Aprendizaje , Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Animales , Conducta Animal , Trastornos del Conocimiento/genética , Femenino , Heterocigoto , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas/metabolismo , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa
16.
J Neurosci Res ; 83(2): 222-32, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16342205

RESUMEN

We recently identified Pam (for protein associated with c-Myc), as a binding partner for the tuberous sclerosis complex (TSC) protein tuberin in brain. The highly conserved Pam homologs in Drosophila and C. elegans are neuron-specific proteins that regulate synaptic growth. The Pam gene contains 83 exons and encodes a 4,641-amino-acid polypeptide with a predicted molecular weight of approximately 510 kDa. In a previous study, we demonstrated that Pam is expressed as two forms, approximately 450 kDa in rat embryonic and a approximately 350 kDa in rat adult brain. Here we have extended that work to show the approximately 450 kDa form is expressed in rat embryonic kidney, heart, and lung and in rat cell lines, and the approximately 350 kDa form is expressed in adult rat tissues as well as in human and mouse brain and human and mouse cell lines. To understand the size difference, we investigated alternative splicing of Pam in brain and detected six isoforms in the Myc-binding region resulting from splicing of exon 53, and three new exons, 52A, 56, and 56A. We also demonstrate that the presence of exon 52A in Pam significantly enhances binding to Myc, suggesting functional importance of this alternative splicing. The presence of Pam in many cellular compartments, its spliced variants, as well as its multiple binding partners, including tuberin, make it a complex, yet intriguing protein in the nervous system.


Asunto(s)
Empalme Alternativo , Expresión Génica/fisiología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencia de Aminoácidos , Animales , Northern Blotting/métodos , Western Blotting/métodos , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Clonación Molecular/métodos , Exones , Humanos , Inmunohistoquímica/métodos , Riñón/metabolismo , Pulmón/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica/fisiología , Isoformas de Proteínas/metabolismo , ARN Mensajero/biosíntesis , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Activación Transcripcional
17.
J Biol Chem ; 279(2): 1351-8, 2004 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-14559897

RESUMEN

Tuberous Sclerosis Complex (TSC) is an autosomal dominant disorder associated with mutations in TSC1, which codes for hamartin, or TSC2, which codes for tuberin. The brain is one of the most severely affected organs, and CNS lesions include cortical tubers and subependymal giant cell astrocytomas, resulting in mental retardation and seizures. Tuberin and hamartin function together as a complex in mammals and Drosophila. We report here the association of Pam, a protein identified as an interactor of Myc, with the tuberin-hamartin complex in the brain. The C terminus of Pam containing the RING zinc finger motif binds to tuberin. Pam is expressed in embryonic and adult brain as well as in cultured neurons. Pam has two forms in the rat CNS, an approximately 450-kDa form expressed in early embryonic stages and an approximately 350-kDa form observed in the postnatal period. In cortical neurons, Pam co-localizes with tuberin and hamartin in neurites and growth cones. Although Pam function(s) are yet to be defined, the highly conserved Pam homologs, HIW (Drosophila) and RPM-1 (Caenorhabditis elegans), are neuron-specific proteins that regulate synaptic growth. Here we show that HIW can genetically interact with the Tsc1.Tsc2 complex in Drosophila and could negatively regulate Tsc1.Tsc2 activity. Based on genetic studies, HIW has been implicated in ubiquitination, possibly functioning as an E3 ubiquitin ligase through the RING zinc finger domain. Therefore, we hypothesize that Pam, through its interaction with tuberin, could regulate the ubiquitination and proteasomal degradation of the tuberin-hamartin complex particularly in the CNS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Proteínas de Drosophila , Oxigenasas de Función Mixta , Proteínas del Tejido Nervioso/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Animales , Encéfalo/metabolismo , Proteínas Portadoras/fisiología , Línea Celular , Sistema Nervioso Central/metabolismo , Secuencia Conservada , ADN Complementario/metabolismo , Drosophila , Genotipo , Glutatión Transferasa/metabolismo , Humanos , Inmunohistoquímica , Modelos Biológicos , Modelos Genéticos , Mutación , Neuronas/metabolismo , Células PC12 , Fenotipo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA