Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Acc Chem Res ; 56(2): 140-156, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36594722

RESUMEN

Securinega alkaloids, composed of more than 100 members characterized by the compact tetracyclic scaffold, have fascinated the synthetic community with their structural diversity and notable bioactivities. On the basis of the structural phenotype, oligomerizations and oxidations are major biosynthetic diversification modes of the basic Securinega framework. Despite the rich history of synthesis of basic monomeric Securinega alkaloids, the synthesis of oligomeric Securinega alkaloids, as well as oxidized derivatives, has remained relatively unexplored because of their extra structural complexity. In the first half of this Account, our synthetic studies toward high-order Securinega alkaloids are described. We aimed to establish a reliable synthetic method to form C14-C15' and C12-C15' bonds, which are prevalent connection modes between monomers. During our total synthesis of flueggenine C (9), we have invented an accelerated Rauhut-Currier reaction capable of forming the C14-C15' bond stereoselectively. Installation of the nucleophilic functionality to the Michael acceptor, which ushers the C-C bond forming conjugate addition to follow the intramolecular pathway, was the key to success. The C12-C15' linkage, which was inaccessible via an accelerated Rauhut-Currier reaction, was established by devising a complementary cross-coupling/conjugate reduction-based dimerization strategy that enabled the total synthesis of flueggenines D (11) and I (14). In this approach, the C12-C15' linkage was established via a Stille cross-coupling, and the stereochemistry of the C15' position was controlled during the following conjugate reduction step. In the later half of this Account, our achievements in the field of high-oxidation state Securinega alkaloids synthesis are depicted. We have developed oxidative transformations at the N1 and C2-C4 positions, where the biosynthetic oxidation event occurs most frequently. The discovery of a VO(acac)2-mediated regioselective Polonovski reaction allowed us to access the key 2,3-dehydroallosecurinine (112). Divergent synthesis of secu'amamine A (62) and fluvirosaones A (60) and B (61) was accomplished by exploiting the versatile reactivities of the C2/C3 enamine moiety in 112. We have also employed a fragment-coupling strategy between menisdaurilide and piperidine units, which allowed the installation of various oxygen-containing functionality on the piperidine ring. Combined with the late-stage, light-mediated epimerization and well-orchestrated oxidative modifications, collective total synthesis of seven C4-oxygenated securinine-type natural products was achieved. Lastly, the synthesis of flueggeacosine B (70) via two synthetic routes from allosecurinine (103) was illustrated. The first-generation synthesis (seven overall steps) employing Pd-catalyzed cross-coupling between stannane and thioester to form the key C3-C15' bond enabled the structural revision of the natural product. In the second-generation synthesis, we have invented visible-light-mediated, Cu-catalyzed cross-dehydrogenative coupling (CDC) between an aldehyde and electron-deficient olefin, which streamlined the synthetic pathway into four overall steps. Organisms frequently utilize dimerization (oligomerization) and oxidations during the biosynthesis as a means to expand the chemical space of their secondary metabolites. Therefore, methods and strategies for dimerizations and oxidations that we have developed using the Securinega alkaloids as a platform would be broadly applicable to other alkaloids. It is our sincere hope that lessons we have learned during our synthetic journey would benefit other chemists working on organic synthesis.


Asunto(s)
Alcaloides , Securinega , Estereoisomerismo , Piperidinas
2.
J Am Chem Soc ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917347

RESUMEN

Efficiently generating intricate molecular complexity is a coveted goal in organic synthesis. This can be realized through the implementation of inventive and audacious strategies coupled with the exploration and advancement of novel molecular reactivity pathways. Herein, we present a concise two-step synthesis of a high-oxidation state heterotrimeric securinega alkaloid, suffranidine B, from 2,3-dehydroallosecurinine and the vinylogous ketoaldehyde compound derived from kojic acid. Key to the success was the astute selection of appropriate acids during both the heterotrimerization and the desymmetrizing cyclization steps. This study underscores the value of biomimicry in the synthesis of complex natural products.

3.
J Am Chem Soc ; 144(20): 8932-8937, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35576619

RESUMEN

We completed the synthesis of dimeric high-oxidation-state securinega alkaloid flueggeacosine B via two synthetic routes from allosecurinine. The first-generation synthesis (seven overall steps) involved a Liebeskind-Srogl cross-coupling reaction for the union of two functionalized fragments, the organostannane and the thioester. As a means to further streamline the synthetic route, we have developed a visible-light-mediated Cu-catalyzed cross-dehydrogenative coupling (CDC) reaction between an aldehyde and an electron-deficient olefin. This enabled the second-generation synthesis of flueggeacosine B from allosecurinine in four overall steps. The newly developed CDC reaction paves a direct way to a conjugated dicarbonyl moiety, a ubiquitous structural moiety present in various natural products.


Asunto(s)
Alcaloides , Cobre/química , Securinega , Alquenos , Catálisis , Paladio
4.
Bioorg Chem ; 127: 105985, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35809512

RESUMEN

We previously discovered that triterpenoid saponin platycodin D inhibits the SARS-CoV-2 entry to the host cell. Herein, we synthesized various saponin derivatives and established a structure-activity relationship of saponin-based antiviral agents against SARS-CoV-2. We discovered that the C3-glucose, the C28-oligosaccharide moiety that consist of (→3)-ß-d-Xyl-(1 â†’ 4)-α-l-Rham-(1 â†’ 2)-ß-d-Ara-(1 â†’ ) as the last three sugar units, and the C16-hydroxyl group were critical components of saponin-based coronavirus cell entry inhibitors. These findings enabled us to develop minimal saponin-based antiviral agents that are equipotent to the originally discovered platycodin D. We found that our saponin-based antiviral agents inhibited both the endosomal and transmembrane protease serine 2-mediated cell surface viral entries. Cell fusion assay experiment revealed that our newly developed compounds inhibit the SARS-CoV-2 entry by blocking the fusion between the viral and host cell membranes. The effectiveness of the newly developed antiviral agents over various SARS-CoV-2 variants hints at the broad-spectrum antiviral efficacy of saponin-based therapeutics against future coronavirus variants.


Asunto(s)
COVID-19 , Saponinas , Antivirales/farmacología , Humanos , Fusión de Membrana , SARS-CoV-2 , Saponinas/farmacología , Relación Estructura-Actividad
5.
J Am Chem Soc ; 143(47): 19966-19974, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784466

RESUMEN

Biosynthetic processes often involve reorganization of one family of natural products to another. Chemical emulation of nature's rearrangement-based structural diversification strategy would enable the conversion of readily available natural products to other value-added secondary metabolites. However, the development of a chemical method that can be universally applied to structurally diverse natural products is nontrivial. Key to the successful reorganization of complex molecules is a versatile and mild bond-cleaving method that correctly places desired functionality, facilitating the target synthesis. Here, we report a ring-opening functionalization of a tertiary amine that can introduce desired functionalities in the context of alkaloids reorganization. The semistability of the difluoromethylated ammonium salt, accessed by the reaction of tertiary amine and in situ generated difluorocarbene, enabled the attack at the α-position by various external nucleophiles. The utility and generality of the method is highlighted by its applications in the transformation of securinega, iboga, and sarpagine alkaloids to neosecurinega, chippiine/dippinine, and vobasine-type bisindole alkaloids, respectively. During the course of these biosynthetically inspired reorganizations, we could explore chemical reactivities of biogenetically relevant precursors.


Asunto(s)
Alcaloides/síntesis química , Aminas/química
6.
J Org Chem ; 85(11): 7576-7582, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32370497

RESUMEN

We describe the first total synthesis of cinnamodial-based dimer (-)-capsicodendrin. First, we developed a 12-step synthetic route to access (-)-cinnamodial from 1-vinyl-2,6,6-trimethylcyclohexene. We then showed that (-)-cinnamodial can selectively dimerize to (-)-capsicodendrin under kinetically controlled basic conditions. Our observations regarding a facile conversion of (-)-capsicodendrin back to (-)-cinnamodial hint at the possibility that (-)-capsicodendrin is a chemical reservoir of insecticidal (-)-cinnamodial and Cinnamosma genus plants release it upon environmental stresses.


Asunto(s)
Insecticidas , Magnoliopsida , Sesquiterpenos , Benzaldehídos
7.
J Org Chem ; 85(10): 6815-6821, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32340445

RESUMEN

We describe the total synthesis of epoxyquinoid natural products (+)-pestalofone A and (+)-iso-A82775C. The synthesis of (+)-16-oxo-iso-A82775C, the putative biosynthetic precursor of pestalofone C, is also presented. The allene moiety present in (+)-iso-A82775C and (+)-16-oxo-iso-A82775C was constructed from the ketodiene-yne group via a biosynthetically relevant sequence involving a conjugate reduction and a base-catalyzed tautomerization. Attempted Diels-Alder reaction-based dimerizations of (+)-16-oxo-iso-A82775C and (+)-iso-A82775C toward pestalofones B and C are also described.

8.
Angew Chem Int Ed Engl ; 59(17): 6894-6901, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32043725

RESUMEN

Presented here is a concise synthesis of secu'amamine A, and fluvirosaones A and B from readily available allosecurinine and viroallosecurinine. The key C2-enamine derivative of (viro)allosecurinine, the presumed biosynthetic precursors of these natural products, was accessed, for the first time, by a VO(acac)2 -mediated regioselective Polonovski reaction. Formal hydration and 1,2-amine shift of this pluripotent enamine compound afforded secu'amamine A. Formal oxidative [3+2] cycloaddition reaction between this enamine and TMS-substituted methallyl iodide reagent paved the way to the precursors of fluvirosaones A and B. The relative stereochemistry at the C2 position of these advanced intermediates governs the fate of 1,2-amine shift leading to fluvirosaones A and B. The syntheses of potential biosynthetic precursors and investigations of their chemical reactivities have provided insights regarding the biogenesis of these natural products.


Asunto(s)
Alcaloides/síntesis química , Biomimética , Compuestos Heterocíclicos de Anillo en Puente/síntesis química , Alcaloides/química , Reacción de Cicloadición , Compuestos Heterocíclicos de Anillo en Puente/química , Compuestos Heterocíclicos de Anillo en Puente/metabolismo , Oxidación-Reducción , Estereoisomerismo
9.
J Org Chem ; 84(3): 1398-1406, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30588812

RESUMEN

We describe different modes of dimerization of various α',γ-dioxyenone derivatives with potential applications to the synthesis of high-order securinega alkaloids. We learned that the relative stereochemical relationship between α'- and γ-hydroxyl groups of the α',γ-dihydroxyenone derivative determines the mode of dimerization. While cis-α',γ-dioxyenone 26 provided the Rauhut-Currier-type (RC-type) dimer 31 upon reaction with TBAF, trans-α',γ-dihydroxyenone 34 afforded dimeric tetrahydrofuran derivative 41 under the same reaction conditions. We also noticed that the protection of the γ-hydroxyl group drastically changes the reaction outcomes. While cis-α'-oxy-γ-OPiv-enone 49 did not show any reactivity in the presence of TBAF, trans-α'-hydroxy-γ-OPiv-enone 45 produced the RC-type dimer 46 under the same reaction conditions. Computational analysis revealed the detailed mechanism of the latter transformation.

10.
Org Biomol Chem ; 17(7): 1869-1874, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30117503

RESUMEN

STING, a central protein in the innate immune response to cytosolic DNA, has emerged as a hot target for the development of vaccine-adjuvants and anticancer drugs. The discovery of potent human-STING (hSTING) agonist is expected to revolutionize the current cancer immunotherapy. Inspired by the X-ray crystal structure of DMXAA (5,6-dimethylxanthenone-4-acetic acid) and hSTINGG230I complex, we designed various DMXAA derivatives that contain a hydrogen bonding donor/acceptor or a halide at the C7 position. While 7-bromo- and 7-hydroxyl-DMXAA showed notable binding to mouse-STING (mSTING), our newly synthesized C7-functionalized DMXAA derivatives did not bind to hSTING. Nevertheless, our newly developed synthetic protocol for the C7-functionalization of DMXAA would be applicable to access other C7-substituted DMXAA analogues as potential hSTING agonists.


Asunto(s)
Diseño de Fármacos , Proteínas de la Membrana/agonistas , Xantonas/farmacología , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Temperatura , Xantonas/síntesis química , Xantonas/química
11.
J Am Chem Soc ; 139(18): 6302-6305, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28436228

RESUMEN

The first total synthesis of dimeric securinega alkaloid (-)-flueggenine C is completed via an accelerated intermolecular Rauhut-Currier (RC) reaction. Despite the numerous reports on the total synthesis of monomeric securinegas, the synthesis of dimeric securinegas whose monomeric units are connected by a putative enzymatic RC reaction has not been reported to date. We have found that installation of a nucleophilic functional group at the γ-position of an enone greatly accelerates the rate of the diastereoselective intermolecular RC reaction. This discovery enabled an efficient and selective formation of the dimeric intermediate which was further transformed to (-)-flueggenine C.


Asunto(s)
Alcaloides/síntesis química , Alcaloides/química , Conformación Molecular , Estereoisomerismo
12.
J Org Chem ; 82(18): 9335-9341, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28699341

RESUMEN

The total synthesis of (±)-azaspirene (1) was achieved in a total of six steps from commercially available materials. Keys to the conciseness of our synthetic approach were the effective γ-lactam formation from linear precursor 36 and successful tandem epoxidations of γ-lactam 34 to afford α,ß-epoxy-γ-hydroxy-γ-lactam intermediate 14. While our streamlined synthesis of azaspirene (1) sought inspiration from its biogenetic hypothesis, experimentally observed chemical reactivity of biosynthetically relevant precursors conversely provides insights to the biological origin of this natural product.


Asunto(s)
Pirrolidinonas/síntesis química , Compuestos de Espiro/síntesis química , Estructura Molecular , Pirrolidinonas/química , Compuestos de Espiro/química
13.
J Org Chem ; 79(2): 473-86, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24127681

RESUMEN

A full account of our concise and enantioselective total syntheses of all known (-)-trigonoliimine alkaloids is described. Our retrobiosynthetic analysis of these natural products enabled identification of a single bistryptamine precursor as a precursor to all known trigonoliimines through a sequence of transformations involving asymmetric oxidation and reorganization. Our enantioselective syntheses of these alkaloids enabled the revision of the absolute stereochemistry of (-)-trigonoliimines A, B, and C. We report that trigonoliimines A, B, C and structurally related compounds showed weak anticancer activities against HeLa and U-937 cells.


Asunto(s)
Antineoplásicos/farmacología , Alcaloides Indólicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Alcaloides Indólicos/síntesis química , Alcaloides Indólicos/química , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad , Células U937
14.
J Org Chem ; 79(18): 8550-6, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25147913

RESUMEN

We report the X-ray crystal structure of a site-selective peptide catalyst moiety and teicoplanin A2-2 complex. The expressed protein ligation technique was used to couple T4 lysozyme (T4L) and a synthetic peptide catalyst responsible for the selective phosphorylation of the N-acetylglucosamine sugar in a teicoplanin A2-2 derivative. The T4L-Pmh-dPro-Aib-dAla-dAla construct was crystallized in the presence of teicoplanin A2-2. The resulting 2.3 Å resolution protein-peptide-teicoplanin complex crystal structure revealed that the nucleophilic nitrogen of N-methylimidazole in the Pmh residue is in closer proximity (7.6 Å) to the N-acetylglucosamine than the two other sugar rings present in teicoplanin (9.3 and 20.3 Å, respectively). This molecular arrangement is consistent with the observed selectivity afforded by the peptide-based catalyst when it is applied to a site-selective phosphorylation reaction involving a teicoplanin A2-2 derivative.


Asunto(s)
Acetilglucosamina/química , Antibacterianos/síntesis química , Proteínas Portadoras/síntesis química , Teicoplanina/análogos & derivados , Secuencia de Aminoácidos , Antibacterianos/química , Sitios de Unión , Proteínas Portadoras/química , Catálisis , Cristalografía por Rayos X , Conformación Molecular , Fosforilación , Teicoplanina/síntesis química , Teicoplanina/química
15.
Chem Commun (Camb) ; 60(50): 6391-6394, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38828749

RESUMEN

In this study, we present the first total synthesis of (-)-securingine G. Diverging from the proposed biosynthetic pathway, our approach involves the addition of nucleophilic pyridine anion species to the electrophilic menisdaurilide congener. Crucially, incorporating a weakly basic yet nucleophilic tri(2-pyridinyl)lanthanum complex proved essential to circumvent undesired base-mediated pathways during the key coupling reaction. Notably, we introduce n-Bu3La·5LiCl as a new exchange reagent, facilitating efficient halide/lanthanum exchange of (hetero)aryl halides.

16.
Org Lett ; 26(27): 5640-5645, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38924766

RESUMEN

The generation of radical intermediates via SET-mediated deoxygenation of activated alcohol derivatives is desirable, as alcohols can be utilized in various radical-mediated reactions. Herein, we introduce α-N-phthalimido-oxy isobutyrate (NPIB) as a novel activating group for alcohols. Essentially, it is a more chemically robust alternative to Overman's N-phthalimidoyl oxalate group. The utility of the NPIB group is showcased in the conversion of tertiary alcohols to nitriles under Ir/Cu dual catalysts and in the presence of TMSCN upon blue LED irradiation. With our newly developed NPIB handle, the reactivities of N-hydroxyphthalimide esters derived from carboxylic acids would be achievable with naturally and commercially more abundant alcohol substrates.

17.
Front Chem ; 12: 1355636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318111

RESUMEN

Securinega alkaloids have intrigued chemists since the isolation of securinine in 1956. This family of natural products comprises a securinane subfamily with a piperidine substructure and norsecurinane alkaloids featuring a pyrrolidine core. From a biosynthetic perspective, the piperidine moiety in securinane alkaloids derives from lysine, whereas the pyrrolidine moiety in norsecurinane natural products originates from ornithine, marking an early biogenetic divergence. Herein, we introduce a single-atom deletion strategy that enables the late-stage conversion of securinane to norsecurinane alkaloids. Notably, for the first time, this method enabled the transformation of piperidine-based (allo)securinine into pyrrolidine-based (allo)norsecurinine. Straightforward access to norsecurinine from securinine, which can be readily extracted from the plant Flueggea suffruticosa, abundant across the Korean peninsula, holds promise for synthetic studies of norsecurinine-based oligomeric securinega alkaloids.

18.
J Am Chem Soc ; 135(33): 12414-21, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23924210

RESUMEN

We report three distinct, peptide-based catalysts that enable site-selective phosphorylation of three distinct hydroxyl groups within the complex glycopeptide antibiotic teicoplanin A2-2. Two of the catalysts are based on a design that capitalizes on a catalyst-substrate interaction that mimics the biological mechanism of action for teicoplanin. These catalysts are based on a DXaa-DXaa peptide motif that is known to target the teicoplanin structure in a specific manner. The third was identified through evaluation of a set of catalysts that had been developed for historically distinct projects. Each catalyst contains additional functionality designed to dispose a catalytic moiety (a nucleophilic alkylimidazole) at a different region of the glycopeptide structure. A combination of mass spectrometry and 2D-NMR spectroscopy allowed structural assignment of the distinct phosphorylated teicoplanin derivatives. Mechanistic studies are also reported that support the hypotheses that led to the discovery of the catalysts. In this manner, small molecule catalysts have been achieved that allow rational, catalytic control over reactions at sites that are separated by 11.6, 16.5, and nearly 17.7 Å, based on the X-ray crystal structure of teicoplanin A2-2. Finally, we report the biological activity of the new phosphorylated teicoplanin analogs and compare the results to the natural product itself.


Asunto(s)
Biocatálisis , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Teicoplanina/metabolismo , Acetilglucosamina/metabolismo , Sitios de Unión , Manosa/metabolismo , Modelos Moleculares , Fosforilación , Conformación Proteica , Teicoplanina/química
19.
J Org Chem ; 78(23): 11970-84, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24152243

RESUMEN

The full details of our enantioselective total syntheses of (-)-agelastatins A-F (1-6), the evolution of a new methodology for synthesis of substituted azaheterocycles, and the first side-by-side evaluation of all known (-)-agelastatin alkaloids against nine human cancer cell lines are described. Our concise synthesis of these alkaloids exploits the intrinsic chemistry of plausible biosynthetic precursors and capitalizes on a late-stage synthesis of the C-ring. The critical copper-mediated cross-coupling reaction was expanded to include guanidine-based systems, offering a versatile preparation of substituted imidazoles. The direct comparison of the anticancer activity of all naturally occurring (-)-agelastatins in addition to eight advanced synthetic intermediates enabled a systematic analysis of the structure-activity relationship within the natural series. Significantly, (-)-agelastatin A (1) is highly potent against six blood cancer cell lines (20-190 nM) without affecting normal red blood cells (>333 µM). (-)-Agelastatin A (1) and (-)-agelastatin D (4), the two most potent members of this family, induce dose-dependent apoptosis and arrest cells in the G2/M-phase of the cell cycle; however, using confocal microscopy, we have determined that neither alkaloid affects tubulin dynamics within cells.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Alcaloides/síntesis química , Alcaloides/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Células HeLa , Humanos , Conformación Molecular , Estereoisomerismo , Relación Estructura-Actividad , Células U937
20.
Toxicol Appl Pharmacol ; 265(1): 61-72, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23022515

RESUMEN

Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50µM) for different durations. When late 2-cells were incubated with 5µM fluoxetine for 6h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5µM) over 24h showed a reduction in blastocyst formation. The addition of fluoxetine (5µM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K(+) channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ~30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Blastocisto/efectos de los fármacos , Western Blotting , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cromosomas/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Consumo de Oxígeno/efectos de los fármacos , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Embarazo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA