Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Food Sci Technol ; 122: 211-222, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35250172

RESUMEN

BACKGROUND: In the context of the current pandemic caused by the novel coronavirus, molecular detection is not limited to the clinical laboratory, but also faces the challenge of the complex and variable real-time detection fields. A series of novel coronavirus events were detected in the process of food cold chain packaging and transportation, making the application of molecular diagnosis in food processing, packaging, transportation, and other links urgent. There is an urgent need for a rapid detection technology that can adapt to the diversity and complexity of food safety. SCOPE AND APPROACH: This review introduces a new molecular diagnostic technology-biosensor analysis technology based on CRISPR-Cas12a. Systematic clarification of its development process and detection principles. It summarizes and systematically organizes its applications in viruses, food-borne pathogenic bacteria, small molecule detection, etc. In the past four years, which provides a brand-new and comprehensive solution for food detection. Finally, this article puts forward the challenges and the prospects for food safety. KEY FINDINGS AND CONCLUSIONS: The novel coronavirus hazards infiltrated every step of the food industry, from processing to packaging to transportation. The biosensor analytical technology based on CRISPR-Cas12a has great potential in the qualitative and quantitative analysis of infectious pathogens. CRISPR-Cas12a can effectively identify the presence of the specific nucleic acid targets and the small changes in sequences, which is particularly important for nucleic acid identification and pathogen detection. In addition, the CRISPR-Cas12a method can be adjusted and reconfigured within days to detect other viruses, providing equipment for nucleic acid diagnostics in the field of food safety. The future work will focus on the development of portable microfluidic devices for multiple detection. Shao et al. employed physical separation methods to separate Cas proteins in different microfluidic channels to achieve multiple detection, and each channel simultaneously detected different targets by adding crRNA with different spacer sequences. Although CRISPR-Cas12a technology has outstanding advantages in detection, there are several technical barriers in the transformation from emerging technologies to practical applications. The newly developed CRISPR-Cas12a-based applications and methods promote the development of numerous diagnostic and detection solutions, and have great potential in medical diagnosis, environmental monitoring, and especially food detection.

2.
Ecotoxicol Environ Saf ; 231: 113177, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35030527

RESUMEN

The objective of this study was to investigate the effects of exposure to endotoxin on the reproductive performance of humans and animals in pregnancy and delivery period. Mucin is considered to play a critical role in protecting the tissue epithelium. At pregnancy period, the MUC2 expression of uterus in the High LPS group was significantly higher than that in the Control group. The glycosaminoglycans of gland cells were secreted into the uterine cavity to protect the uterus. Then, the MUC2 layer became thinner, and LPS entered the lamina propria of the uterus. The mRNA expression of tight junction proteins showed a marked drop, and morphological damage of the uterus occurred. Subsequently, the glycosaminoglycans of gland cells in the High LPS and Low LPS groups increased with the increasing LPS dose, and the damage to the endometrial epithelium was repaired in female mice at Day 5 postdelivery. A low dose of LPS activated the PI3K/AKT signaling pathways to increase the glycosaminoglycans particles, while a high dose of LPS inhibited the PI3K/AKT signaling pathway to decrease the glycosaminoglycans particles. Taken together, our results suggest that gland cells secreted glycosaminoglycans particles into the uterine cavity by exocytosis to increase the thickness of the mucus layer to protect the uterus and that this process was regulated by PI3K/AKT signaling pathways.


Asunto(s)
Lipopolisacáridos , Fosfatidilinositol 3-Quinasas , Animales , Células Epiteliales/metabolismo , Femenino , Lipopolisacáridos/toxicidad , Ratones , Mucina 2 , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
3.
Molecules ; 27(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408487

RESUMEN

The efficient capture of multi-pollutant residues in food is vital for food safety monitoring. In this study, in-situ-fabricated magnetic MIL-53(Al) metal organic frameworks (MOFs), with good magnetic responsiveness, were synthesized and applied for the magnetic solid-phase extraction (MSPE) of chloramphenicol, bisphenol A, estradiol, and diethylstilbestrol. Terephthalic acid (H2BDC) organic ligands were pre-coupled on the surface of amino-Fe3O4 composites (H2BDC@Fe3O4). Fe3O4@MIL-53(Al) MOF was fabricated by in-situ hydrothermal polymerization of H2BDC, Al (NO3)3, and H2BDC@Fe3O4. This approach highly increased the stability of the material. The magnetic Fe3O4@MIL-53(Al) MOF-based MSPE was combined with high-performance liquid chromatography-photo diode array detection, to establish a novel sensitive method for analyzing multi-pollutant residues in milk. This method showed good linear correlations, in the range of 0.05-5.00 µg/mL, with good reproducibility. The limit of detection was 0.004-0.108 µg/mL. The presented method was verified using a milk sample, spiked with four pollutants, which enabled high-throughput detection and the accuracies of 88.17-107.58% confirmed its applicability, in real sample analysis.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Animales , Cromatografía Líquida de Alta Presión/métodos , Contaminantes Ambientales/análisis , Límite de Detección , Fenómenos Magnéticos , Estructuras Metalorgánicas/química , Leche/química , Reproducibilidad de los Resultados , Extracción en Fase Sólida/métodos
4.
J Cell Mol Med ; 25(12): 5341-5350, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33942488

RESUMEN

Sestrin2 (SESN2) is a conserved stress-inducible protein (also known as hypoxia-inducible gene 95 (HI95)) that is induced under hypoxic conditions. SESN2 represses the production of reactive oxygen species (ROS) and provides cytoprotection against various noxious stimuli, including hypoxia, oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. In recent years, the determination of the regulation and signalling mechanisms of SESN2 has increased our understanding of its role in the hypoxic response. SESN2 has well-documented roles in hypoxia-related diseases, making it a potential target for diagnosis and treatment. This review discusses the regulatory mechanisms of SESN2 and highlights the significance of SESN2 as a biomarker and therapeutic target in hypoxia-related diseases, such as cancer, respiratory-related diseases, cardiovascular diseases and cerebrovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/patología , Trastornos Cerebrovasculares/patología , Hipoxia/fisiopatología , Neoplasias/patología , Proteínas Nucleares/metabolismo , Peroxidasas/metabolismo , Enfermedades Respiratorias/patología , Animales , Enfermedades Cardiovasculares/metabolismo , Trastornos Cerebrovasculares/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Estrés Oxidativo , Peroxidasas/genética , Especies Reactivas de Oxígeno , Enfermedades Respiratorias/metabolismo
5.
Anal Chem ; 93(50): 16922-16931, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34879197

RESUMEN

In recent years, the combination of DNA nanotechnology and biosensing has been extensively reported. Herein, we attempted to develop a dual sensitization smartphone colorimetric strategy based on rolling circle amplification (RCA) coils gathering Au tetrahedra and explore its application. The dual sensitization effect of this strategy was achieved by rolling circle amplification (RCA) and Au tetrahedra. Under the initiation of the complementary DNA, a large number of ssDNA were generated, achieving amplification of the reaction signal. At the same time, due to the formation of Au tetrahedra, more gold nanoparticles could be gathered under the same conditions, and the signal would be amplified again. Using software ImageJ, the gray value of the reaction solution can be analyzed, detecting the target timely under the practical conditions of lack of equipment. By selecting aptamers with strong binding affinity, we applied this strategy to detect creatine kinase isoenzymes (CK-MB), showing a limit of detection of 0.8 pM, which performed well in actual detection and can meet the needs for real-time detection of CK-MB. Therefore, a universal detection platform was developed, which has broad application prospects in biosensing, clinical diagnosis, food detection, and other fields.


Asunto(s)
Colorimetría , Nanopartículas del Metal , Oro , Nanotecnología , Teléfono Inteligente
6.
Analyst ; 146(10): 3328-3335, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33999047

RESUMEN

Mycotoxins cause significant harm to human health, so it is imperative to develop a highly sensitive and easy-to-operate method for the detection of mycotoxins. Herein, a fluorescence-based magnetic separation immunoassay for simultaneous detection of mycotoxins fumonisin B1 and zearalenone is established. The method employed high fluorescent upconversion-nanoparticles(UCNPs) conjugated with biotinylated antigens as upconversion fluoroscent probes. Magnetic nanoparticles(MNPs) immobilized with monoclonal antibodies are used as immune-capture probes. Highly sensitive detection of FB1 and ZEN was achieved based on the luminescence properties of UCNPs and the separation effects of MNPs. The results showed a robust linear correlation between the enhanced fluorescence emission intensity and the logarithmic concentrations of FB1 and ZEN under the optimal conditions (R2(FB1) = 0.9965, R2(ZEN) = 0.9976), and the linear ranges were 0.05-5 ng mL-1. Furthermore, the limits of detection (LOD) were 0.016 ng mL-1 for FB1 and 0.012 ng mL-1 for ZEN. The standard addition method was used to determine the content of FB1 and ZEN in the samples to evaluate the accuracy of the process. The average recoveries were 89.48% to 113.69% and 85.97% to 113.82%, respectively. Compared with the other five mycotoxins, this method had high selectivity. It is expected that the multi-component simultaneous detection can be further realized by using the multicolor labeling characteristics of UCNPs.


Asunto(s)
Micotoxinas , Zearalenona , Técnica del Anticuerpo Fluorescente , Contaminación de Alimentos/análisis , Fumonisinas , Humanos , Inmunoensayo , Límite de Detección , Fenómenos Magnéticos , Micotoxinas/análisis
7.
J Cell Physiol ; 234(9): 15299-15307, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30786008

RESUMEN

P300 and HDAC1 can be involved in the development of various liver diseases by regulating gene transcription. Endoplasmic reticulum stress (ERS) is one of the main pathways of apoptosis and is activated during inflammatory responses, but the roles of P300 and HDAC1 in ERS in antituberculosis drug-induced liver injury (ADLI) are not clear. This study confirms that isoniazid can change the states of P300 and HDAC1 in HL-7702 hepatocyte metabolism and induce ERS, causing hepatocyte injury and apoptosis. When combined with C646, however, P300 can be reduced. HL-7702 cells were flattened, and the cytoplasm became crinkled. To a certain extent, ERS was relieved, but hepatocytes suffered worse damage, and the rate of cell apoptosis markedly increased. When MS-275 was applied, HDAC1 level was increased, cell fusion appeared, and fluorescence intensity of endoplasmic reticulum was weakened. In addition, ERS was aggravated, but liver injury was relieved, and the apoptosis rate significantly decreased. Therefore, alteration of P300 and HDAC1 status and ERS are involved in ADLI, and changes in P300 and HDAC1 can regulate ERS and then affect cell damage.

8.
Mikrochim Acta ; 186(3): 151, 2019 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-30712105

RESUMEN

This study describes an upconversion fluorescent aptasensor based on black phosphorus nanohybrids and self-assembled DNA tetrahedrons dual-amplification strategy for rapid detection of the environmental estrogens bisphenol A (BPA) and 17ß-estradiol (E2). Tetrahedron complementary DNAs (T-cDNAs) were self-assembled in an oriented fashion on a 2D nanohybrid composed of black phosphorus (BP) and gold to give a materials of architecture BP-Au@T-cDNAs. In parallel, core-shell upconversion nanoparticles were modified with aptamers (UCNPs@apts) and used as capture probes. On complementary pairing, the BP-Au@T-cDNA quench the fluorescence of UCNPs@apts (measured at an excitation wavelength 808 nm and at main emission peaks at 545 nm and 805 nm.) Compared with single-stranded probes based on black phosphorus and gold, the dual-amplification strategy increases quenching efficiency by nearly 25%-30% and reduces capture time to 10 min. This is due to the higher optical absorption of 2D nanohybrid and the reduction of steric hindrance by T-cDNAs. Exposure to BPA or E2 cause the release of UCNPs@apts from the BP-Au@T-cDNAs due to stronger binding between aptamer and analyte. Hence, fluorescence recovers at 545 nm for BPA and 805 nm for E2. Based on these findings, a dually amplified aptamer assay was constructed that covers the 0.01 to 100 ng mL-1 BPA concentration range, and the 0.1 to 100 ng mL-1 E2 concentration range. The detection limits are 7.8 pg mL-1 and 92 pg mL-1, respectively. This method was applied to the simultaneous determination of BPA and E2 in spiked samples of water, food, serum and urine. Graphical abstract Schematic presentation of novel quenching probes designed by tetrahedron complementary DNAs oriented self-assembled on the surface of black phosphorus/gold nanohybrids. Combined with aptamer-modified upconversion nanoparticles, a dual-amplification self-assembled fluorescence nanoprobe was constructed for simultaneous detection of BPA and E2.


Asunto(s)
Aptámeros de Nucleótidos , Compuestos de Bencidrilo/análisis , Estradiol/análisis , Fluorescencia , Nanopartículas del Metal/química , Fenoles/análisis , Técnicas Biosensibles/métodos , ADN Complementario , Oro , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Fósforo
9.
Cancer Causes Control ; 26(1): 133-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25416450

RESUMEN

BACKGROUND: Growing body of laboratory evidence supports the beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) on colorectal cancer (CRC) prevention. Epidemiologic studies investigating the relationship between n-3 PUFAs intake and risk of CRC, however, have been inconsistent. We aimed to clarify the relation by conducting a meta-analysis of prospective studies. METHODS: Eligible studies were identified by searching PubMed database and by carefully reviewing bibliographies of retrieved publications. Summary relative risks (RRs) with their 95 % confidence intervals (CIs) were computed with a random-effects model. Subgroup, meta-regression, and dose-response analyses were performed to explore potential sources of heterogeneity. RESULTS: A total of 14 prospective studies involving 8,775 cancer cases were included in the final analysis. Overall, total n-3 or marine PUFAs intake was not associated with risk of CRC (RR 0.99 and 1.00). However, there was a trend toward reduced risk of proximal colon cancer (total n-3 PUFAs: RR 0.83, 95 % CI 0.66-1.05; marine PUFAs: RR 0.81, 95 % CI 0.59-1.10) and a significant increased risk of distal colon cancer (total n-3 PUFAs: RR 1.26, 95 % CI 1.06-1.50; marine PUFAs: RR 1.38, 95 % CI 1.11-1.71). Furthermore, marine PUFAs intake accessed longer before diagnosis was associated 21 % reduced risk of CRC (RR 0.79, 95 % CI 0.63-1.00). CONCLUSION: Overall, this meta-analysis finds no relation between n-3 PUFAs intake and risk of CRC. The observed subsite heterogeneity within colon cancer and the possible effect modification by latency time merit further studies.


Asunto(s)
Neoplasias Colorrectales/epidemiología , Grasas de la Dieta/administración & dosificación , Ácidos Grasos Omega-3/administración & dosificación , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/prevención & control , Femenino , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo
10.
Med Sci Monit ; 21: 992-1001, 2015 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-25841675

RESUMEN

BACKGROUND: The aim of this study was to evaluate the efficiency of the combination of Paris and Vienna classifications in a follow-up study of gastric epithelial neoplasia (GEN) patients. MATERIAL AND METHODS: This study was conducted between January 2003 and September 2010, during which 170 biopsy-proven GEN patients were followed up by gastroenterologists and pathologists according to our follow-up regimen (modified Vienna classification). RESULTS: In total, 161 patients with low-grade neoplasia (LGN) and 9 patients with high-grade neoplasia (HGN) were randomly enrolled in our study. Eighteen patients with depressed appearance were observed, of which 9 patients had HGN and 9 patients had low-grade dysplasia (LGD). Three patients with type 0-IIa were observed with low-grade adenoma (LGA), and type 0-I was observed in 2 patients with LGN. Endoscopic or surgical treatments were performed to avoid potential malignancy or bleeding. Two patients with ulcer lesions, 2 patients with non-depressed type 0 appearance, and 3 patients without visible lesions were shown to have higher-grade lesions during follow-up. The misdiagnosis rate of forceps biopsy - 62.07% - was determined by comparing pre- and post-resection diagnoses of 29 patients. CONCLUSIONS: The combination of the Paris and Vienna classifications for GEN may optimize the follow-up routines for patients with suspicious precancerous lesions and may significantly improve the detection of early gastric cancer (EGC) while helping gastroenterologists select the best therapy option.


Asunto(s)
Epitelio/patología , Neoplasias Gástricas/patología , Adulto , Anciano , Biopsia , Demografía , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Gástricas/clasificación , Neoplasias Gástricas/terapia , Resultado del Tratamiento
11.
Curr Res Food Sci ; 8: 100679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304002

RESUMEN

Recently, the application of biosensors in food safety assessment has gained considerable research attention. Nevertheless, the evaluation of biosensors' sensitivity, accuracy, and efficiency is still ongoing. The advent of machine learning has enhanced the application of biosensors in food security assessment, yielding improved results. Machine learning has been preliminarily applied in combination with different biosensors in food safety assessment, with positive results. This review offers a comprehensive summary of the diverse machine learning methods employed in biosensors for food safety. Initially, the primary machine learning methods were outlined, and the integrated application of biosensors and machine learning in food safety was thoroughly examined. Lastly, the challenges and limitations of machine learning and biosensors in the realm of food safety were underscored, and potential solutions were explored. The review's findings demonstrated that algorithms grounded in machine learning can aid in the early detection of food safety issues. Furthermore, preliminary research suggests that biosensors could be optimized through machine learning for real-time, multifaceted analyses of food safety variables and their interactions. The potential of machine learning and biosensors in real-time monitoring of food quality has been discussed.

12.
Mar Drugs ; 11(10): 4035-49, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24152563

RESUMEN

The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for spontaneous rifampicin resistance (Rif), and a mutated rpsL gene to confer streptomycin resistance (Str), was introduced into the S. xiamenensis strain M1-94P that originated from deep-sea sediments. Two new benzopyran derivatives, named xiamenmycin C (1) and D (2), were isolated from the crude extracts of a selected Str-Rif double mutant (M6) of M1-94P. The structures of 1 and 2 were identified by analyzing extensive spectroscopic data. Compounds 1 and 2 both inhibit the proliferation of human lung fibroblasts (WI26), and 1 exhibits better anti-fibrotic activity than xiamenmycin. Our study presents the novel bioactive compounds isolated from S. xiamenensis mutant strain M6 constructed by ribosome engineering, which could be a useful approach in the discovery of new anti-fibrotic compounds.


Asunto(s)
Benzopiranos/química , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Streptomyces/química , Streptomyces/genética , Benzopiranos/farmacología , Fibroblastos/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Humanos , Pulmón/efectos de los fármacos , Mutación/genética , Ribosomas/genética , Treonina/análogos & derivados , Treonina/química , Treonina/farmacología
13.
Sci Total Environ ; 858(Pt 2): 159977, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347282

RESUMEN

A fluorescent biosensor strategy was developed in combination with immunomagnetic separation for rapid and sensitive detection of staphylococcal enterotoxin B (SEB). Magnetic nanoparticles (MNPs) modified with aptamer of SEB could capture the SEB. Then the gold nanoparticles (AuNPs) fluorescent probe was added and a "sandwich structure" was formed between AuNPs, SEB and MNPs. The MNPs-SEB-AuNPs structure could be separated with an additional magnetic field, which resulted the lower signals of AuNPs fluorescent probe. In optimal conditions, the current method displayed a broad quantitative range from 100 to 107 fg/mL and the limit of detection was 3.43 fg/mL. The recovery of SEB-spiked milk samples ranged from 92.00 to 119.00 %, which revealed that the developed method had great accuracy. Furthermore, the method was fast and economical for ultrasensitive detection. Therefore, the fluorescent biosensor based on MNPs-AuNPs is promising for the detection of other environmental and food pollutants.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro/química , Colorantes Fluorescentes , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Límite de Detección
14.
Bioeng Transl Med ; 8(1): e10318, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684114

RESUMEN

Fatigue causes deleterious effects to physical and mental health of human being and may cause loss of lives. Therefore, the adverse effects of fatigue on individuals and the society are massive. With the ever-increasing frequency of overtraining among modern military and sports personnel, timely, portable and accurate fatigue diagnosis is essential to avoid fatigue-induced accidents. However, traditional detection methods require complex sample preparation and blood sampling processes, which cannot meet the timeliness and portability of fatigue diagnosis. With the development of flexible materials and biosensing technology, wearable biosensors have attracted increased attention to the researchers. Wearable biosensors collect biomarkers from noninvasive biofluids, such as sweat, saliva, and tears, followed by biosensing with the help of biosensing modules continuously and quantitatively. The detection signal can then be transmitted through wireless communication modules that constitute a method for real-time understanding of abnormality. Recent developments of wearable biosensors are focused on miniaturized wearable electrochemistry and optical biosensors for metabolites detection, of which, few have exhibited satisfactory results in medical diagnosis. However, detection performance limits the wide-range applicability of wearable fatigue diagnosis. In this article, the application of wearable biosensors in fatigue diagnosis has been discussed. In fact, exploration of the composition of different biofluids and their potential toward fatigue diagnosis have been discussed here for the very first time. Moreover, discussions regarding the current bottlenecks in wearable fatigue biosensors and the latest advancements in biochemical reaction and data communication modules have been incorporated herein. Finally, the main challenges and opportunities were discussed for wearable fatigue diagnosis in the future.

15.
J Hazard Mater ; 449: 131044, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36821893

RESUMEN

Nano-biosensors are of great significance for the analysis and detection of important biological targets. Surprisingly, the CRISPR-Cas12a system not only provides us with excellent gene editing capabilities, it also plays an important role in biosensing due to its high base resolution and high levels of sensitivity. However, most CRISPR-Cas12a-based sensors are limited by their recognition and output modes, are therefore only utilized for the detection of nucleic acids using fluorescence as an output signal. In the present study, we further explored the potential application of CRISPR-Cas12a and developed a CRISPR-Cas12a-based fluorescence/colorimetric biosensor (UCNPs-Cas12a/hydrogel-MOF-Cas12a) that provides an efficient targeting system for small molecules and protein targets. These two sensors yield multiple types of signal outputs by converting the target molecule into a deoxyribonucleic acid (DNA) signal input system using aptamers, amplifying the DNA signal by catalyzed hairpin assembly (CHA), and then combining CRISPR-Cas12a with various nanomaterials. UCNPs-Cas12a/hydrogel-MOF-Cas12a exhibited prominent sensitivity and stability for the detection of estradiol (E2) and prostate-specific antigen (PSA), and was successfully applied for the detection of these targets in milk and serum samples. A major advantage of the hydrogel-MOF-Cas12a system is that the signal output can be observed directly. When combined with aptamers and nanomaterials, CRISPR-Cas12a can be used to target multiple targets, with a diverse array of signal outputs. Our findings create a foundation for the development of CRISPR-Cas12a-based technologies for application in the fields of food safety, environmental monitoring, and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Humanos , Masculino , Colorimetría , Sistemas CRISPR-Cas , ADN , Monitoreo del Ambiente , Hidrogeles , Oligonucleótidos , Femenino
16.
Nanoscale ; 15(10): 5023-5035, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36790132

RESUMEN

Effective and real-time detection of lactate (LA) content in human sweat has attracted considerable attention from researchers. In this work, a novel electrochemical paper-based analysis device (ePAD) was developed for the non-invasive detection of LA in sweat. The electrocatalytic properties of AuNP/Cu-TCPP(Fe) hybrid nanosheets, which were prepared by an optimised synthetic method, were studied by CV and EIS electrochemical methods for the first time and the working electrode can be fabricated using a drip coating method. The lactate sensor was optimised and validated for usability, adoptability and interpretability. To the best of our knowledge, this was the fastest, lowest detection line and widest linear range method reported to date for the detection of lactate. It achieved the detection limit of 0.91 pM and a linear range from 0.013 nM to 100 mM. The dual catalytic effects of the hybrid NSs shortened the detection time by nearly two times and enhanced the sensitivity approximately two times, an accuracy unmatched until now. Furthermore, this sensor was employed for LA analysis and validated by high performance liquid chromatography (HPLC). The ePAD shows superior biocompatibility, accuracy, and high sensitivity and can be easily manufactured. Hence, it is applicable for the long-term monitoring of sweat LA concentrations in point-of-care testing, athletic testing of athletes and military personnel and other subjects in different extreme environments.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Humanos , Ácido Láctico/análisis , Sudor/química , Técnicas Electroquímicas/métodos , Electrodos
17.
Talanta ; 255: 124249, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610257

RESUMEN

It is extremely necessary to establish a rapid and high-throughput method to detect mycotoxins in food, because grains and cereals are greatly vulnerable to mycotoxins before and after harvest. In this study, we developed a portable aptasensor based on streptavidin magnetic microspheres (MMPs) and hybridization chain reaction (HCR) to simultaneously detect T-2 toxin and zearalenone (ZEN) in corn and oat flour. The MMPs compete with the aptamer for binding, which releases more H0 and triggers HCR with the H1 intermediate modified using 6-FAM and BHQ-1 and the unmodified H2. Subsequently, placing the HCR system corresponding to T-2 and ZEN in a constant-temperature fluorescence detector resulted in well-recovered fluorescence of the HCR products. T-2 and ZEN exhibited good fluorescence response in the dynamic range of 0.001-10 ng mL-1 and 0.01-100 ng mL-1 with detection limits of 0.1 pg mL-1 and 1.2 pg mL-1, respectively. In addition, this strategy achieved the selective detection of T-2 and ZEN in the spiked corn and oat flour samples. The results are also in good agreement with those obtained using commercial ELISA kits. This developed aptasensor with the characteristics of simple operation and portability has the application potential of establishing sensitive and portable field detection of various mycotoxins.


Asunto(s)
Aptámeros de Nucleótidos , Micotoxinas , Toxina T-2 , Zearalenona , Zearalenona/análisis , Toxina T-2/análisis , Contaminación de Alimentos/análisis , Micotoxinas/análisis , Aptámeros de Nucleótidos/genética , Zea mays/metabolismo , Límite de Detección
18.
Anal Chim Acta ; 1267: 341351, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257972

RESUMEN

Food safety is one of the greatest public health challenges. Developing ultrasensitive detection methods for analytes at ultra-trace levels is, therefore, essential. In recent years, the bio-barcode assay (BCA) has emerged as an effective ultrasensitive detection strategy that is based on the indirect amplification of various DNA probes. This review systematically summarizes the progress of fluorescence, PCR, and colorimetry-based BCA methods for the detection of various contaminants, including pathogenic bacteria, toxins, pesticides, antibiotics, and other chemical substances in food in over 120 research papers. Current challenges, including long experimental times and strict storage conditions, and the prospects for the application of BCA in biomedicine and environmental analyses, have also been discussed herein.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Inocuidad de los Alimentos , Sondas de ADN/química , Tecnología
19.
Environ Sci Pollut Res Int ; 30(15): 43215-43228, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36652077

RESUMEN

Antibiotics pollution is an urgent public health issue. Biochar is a kind of promising composite for removal antibiotic in aqueous environment. In this study, a novel magnetic graphoxide/biochar composite (mGO/TBC) was synthesized by simple impregnation method and used as an efficient and recyclable persulfate (PS) activator for degradation and removal of sulfonamides (SAs) and quinolones (QNs) antibiotics. Based on the synergism pre-adsorption and degradation between graphoxide and biochar, the removal rates of mGO/TBC on sarafloxacin hydrochloride, sulfadimethoxine, sulfapyridine, sulfadoxine, sulfamonomethoxine, sulfachloropyridazine, enrofloxacin, and ciprofloxacin were increased above 95%. Moreover, the mGO/TBC could be reused at least seven times after degradation-recovery cycles. Quenching experiment and ESR analysis proved that 1O2, •OH, and SO4•- from mGO/TBC/PS system were the primary oxidation active species to degrade SAs and QNs. It is a promising substrate for antibiotic bioremediation with good application prospects.


Asunto(s)
Sulfonamidas , Contaminantes Químicos del Agua , Agua , Óxido de Magnesio , Antibacterianos , Sulfanilamida , Carbón Orgánico , Fenómenos Magnéticos , , Contaminantes Químicos del Agua/análisis
20.
Int J Mol Sci ; 13(3): 3431-3443, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22489160

RESUMEN

The objective of our study was to evaluate whether feeding pseudopurpurin affects bone mineral density and bone geometry architecture in rats. Pseudopurpurin was extracted, analyzed and purified using an HLPC-ESI-MS. Rats were given 0% and 0.5% pseudopurpurin powder in their diet. Femurs of rats were examined at 0.5, 1 and 2 months after pseudopurpurin feeding. Compared with rats in the group 0%, the bone mineral density, and the calcium, magnesium, zinc and manganese concentrations in the rats femur in the group 0.5% increased significantly at 1 month and 2 months after pseudopurpurin feeding. Analytical results of micro-computed tomography showed that the group 0.5% displayed an increase in the trabecular volume fraction, trabecular thickness and trabecular number of the distal femur at 1 and 2 months after pseudopurpurin feeding, and the mean thickness, inner perimeter, outer perimeter, and area of the femur diaphysis were significantly increased at 2 months after pseudopurpurin feeding compared with the group 0%. In parallel, the trabecular separation and structure model index of the distal femur were decreased, compared with the group 0% at 1 and 2 months after pseudopurpurin feeding. In the 0.5% and 0% groups, there was no damage to kidney and liver by histopathology analysis. The long-term feeding of pseudopurpurin is safe for rats. The feeding of 0.5% pseudopurpurin which has specific chemical affinities for calcium for bone improvement and level of bone mineral density, enhances the geometry architecture compared with the 0% group.


Asunto(s)
Antraquinonas/administración & dosificación , Densidad Ósea/efectos de los fármacos , Huesos/anatomía & histología , Huesos/efectos de los fármacos , Animales , Antraquinonas/química , Peso Corporal/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Calcio de la Dieta/administración & dosificación , Colorantes/administración & dosificación , Colorantes/química , Suplementos Dietéticos , Femenino , Fémur/anatomía & histología , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Humanos , Osteoporosis/prevención & control , Ratas , Ratas Wistar , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA