RESUMEN
Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.
Asunto(s)
Astrocitos , Esclerosis Múltiple , Animales , Humanos , Ratones , Antiinflamatorios , Modelos Animales de Enfermedad , Epigénesis Genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Inflamación , ProteómicaRESUMEN
We described the diagnosis and treatment of a patient with autoinflammatory disease, named "Deficiency in ELF4, X-linked (DEX)". A novel ELF4 variant was discovered and its pathogenic mechanism was elucidated. The data about clinical, laboratory and endoscopic features, treatment, and follow-up of a patient with DEX were analyzed. Whole exome sequencing and Sanger sequencing were performed to identify potential pathogenic variants. The mRNA and protein levels of ELF4 were analyzed by qPCR and Western blotting, respectively. The association of ELF4 frameshift variant with nonsense-mediated mRNA decay (NMD) in the pathogenesis DEX was examined. Moreover, RNA-seq was performed to identify the key molecular events triggered by ELF4 variant. The relationship between ELF4 and IFN-ß activity was validated using a dual-luciferase reporter assay and a ChIP-qPCR assay. An 11-year-old boy presented with a Behçet's-like phenotype. The laboratory abnormality was the most obvious in elevated inflammatory indicators. Endoscopy revealed multiple ileocecal ulcers. Intestinal histopathology showed inflammatory cell infiltrations. The patient was treated with long-term immunosuppressant and TNF-α blocker (adalimumab), which reaped an excellent response over 16 months of follow-up. Genetic analysis identified a maternal hemizygote frameshift variant (c.1022del, p.Q341Rfs*30) in ELF4 gene in the proband. The novel variant decreased the mRNA level of ELF4 via the NMD pathway. Mechanistically, insufficient expression of ELF4 disturbed the immune system, leading to immunological disorders and pathogen susceptibility, and disrupted ELF4-activating IFN-ß responses. This analysis detailed the clinical characteristics of a Chinese patient with DEX who harbored a novel ELF4 frameshift variant. For the first time, we used patient-derived cells and carried out transcriptomic analysis to delve into the mechanism of ELF4 variant in DEX.
Asunto(s)
Mutación del Sistema de Lectura , Perfilación de la Expresión Génica , Niño , Humanos , Masculino , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Degradación de ARNm Mediada por Codón sin Sentido , Linaje , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/genética , TranscriptomaRESUMEN
Hardware implementation of reservoir computing (RC), which could reduce the power consumption of machine learning and significantly enhance data processing speed, holds the potential to develop the next generation of machine learning hardware devices and chips. Due to the existing solution only implementing reservoir layers, the information processing speed of photonics RC system are limited. In this paper, a photonic implementation of a VMM-RC system based on single Vertical Cavity Surface Emitting Laser (VCSEL) with two Mach Zehnder modulators (MZMs) has been proposed. Unlike previous work, both the input and reservoir layers are realized in the optical domain. Additionally, the impact of various mask signals, such as Two-level mask, Six-level mask, and chaos mask signal, employed in system, has been investigated. The system's performance improves with the use of more complex mask(t). The minimum Normalized mean square error (NMSE) can reach 0.0020 (0.0456) for Santa-Fe chaotic time series prediction in simulation (experiment), while the minimum Word Error Rate (WER) can 0.0677 for handwritten digits recognition numerically. The VMM-RC proposed is instrumental in advancing the development of photonic RC by overcoming the long-standing limitations of photonic RC systems in reservoir implementation. Linear matrix computing units (the input layer) and nonlinear computing units (the reservoir layer) are simultaneously implemented in the optical domain, significantly enhancing the information processing speed of photonic RC systems.
RESUMEN
In real-world complex systems, heterogeneous components often interact in complex connection patterns and could be schematized by a formalism of multilayer network. In this work, the synchronization characteristics of multilayer network composed of semiconductor lasers (SLs) are investigated systematically. It is demonstrated that the interplay between different layers plays an important role on the synchronization patterns. We elucidate that the performance of cluster synchronization could be facilitated effectively with the introduction of disjoint layer symmetry into network topology. Intertwined stability of clusters from different layers could be decoupled into independent, and the parameter spaces for stable synchronization are extended significantly. The robustness of our proposed regulation scheme on operation parameters is numerically evaluated. Furthermore, the generality of presented theoretical results is validated in networks with more complex topology and multiple layers.
RESUMEN
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
RESUMEN
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.
Asunto(s)
Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Transcriptoma/genética , Adulto , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Leucocitos/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , MicroARNs/sangre , MicroARNs/líquido cefalorraquídeo , MicroARNs/genética , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple Crónica Progresiva/genética , Esclerosis Múltiple Recurrente-Remitente/genética , Recurrencia Local de Neoplasia/metabolismo , ARN Pequeño no Traducido/sangre , ARN Pequeño no Traducido/líquido cefalorraquídeo , ARN Pequeño no Traducido/genéticaRESUMEN
Copper plays a crucial role in the heterogenous dissociation of chlorothiophenols (CTPs) to form chlorothiophenoxy radicals (CTPRs), which is the initial and critical step in the formation of polychlorinated thianthrenes/dibenzothiophenes (PCTA/DTs). Here, first-principles calculations were performed to investigate the activity of Cu(111) surface towards the formation of adsorbed 2-CTPR from 2-CTP. The interaction between 2-CTP and Cu(111) surface was explored to find stable adsorption configurations. Besides, the decomposition routes of 2-CTP on the Cu(111) surface were further explored. Moreover, the effects of water on the formation of absorbed 2-CTPR on the Cu(111) surface were examined. Our results demonstrate that the flat adsorption of 2-CTP on the surface with adsorption energy in the range of -33.21â¯kcal/mol to -28.37â¯kcal/mol is more stable than the vertical adsorption with adsorption energy ranging from -23.53â¯kcal/mol to -13.38â¯kcal/mol. The Cu(111) surface catalyzes the conversion of 2-CTP into the adsorbed 2-CTPR with a modest energy barrier of 9.46â¯kcal/mol. Furthermore, water molecules exhibit stronger catalytic activity in this process with a decreased energy barrier of 5.87â¯kcal/mol through "water bridge" and hydrogen bonding. Specifically, the water accepts the hydrogen atom from 2-CTP and donates another hydrogen to the surface via "water bridge". This research provides a molecular-level understanding of the heterogeneous formation of PCTA/DTs by fly ash, suggesting novel approaches for control strategy and legislation of dioxin analogues.
Asunto(s)
Ceniza del Carbón , Cobre , Tiofenos , Teoría Funcional de la Densidad , Hidrógeno , AguaRESUMEN
Spiking neural networks (SNNs) offer powerful computation capability due to its event-driven nature and temporal processing. However, it is still limited to shallow structure and simple tasks due to the training difficulty. In this work, we propose a deep convolutional residual spiking neural network (DCRSNN) for text classification tasks. In the DCRSNN, the feature extraction is achieved via a convolution SNN with residual connection, using the surrogate gradient direct training technique. Classification is performed by a fully-connected network. We also suggest a hybrid photonic DCRSNN, in which photonic SNNs are used for classification with a converted training method. The accuracy of hard and soft reset methods, as well as three different surrogate functions, were evaluated and compared across four different datasets. Results indicated a maximum accuracy of 76.36% for MR, 91.03% for AG News, 88.06% for IMDB and 93.99% for Yelp review polarity. Soft reset methods used in the deep convolutional SNN yielded slightly better accuracy than their hard reset counterparts. We also considered the effects of different pooling methods and observation time windows and found that the convergence accuracy achieved by convolutional SNNs was comparable to that of convolutional neural networks under the same conditions. Moreover, the hybrid photonic DCRSNN also shows comparable testing accuracy. This work provides new insights into extending the SNN applications in the field of text classification and natural language processing, which is interesting for the resources-restrained scenarios.
RESUMEN
The collective dynamics in neural networks is essential for information processing and has attracted much interest on the application in artificial intelligence. Synchronization is one of the most dominant phenomenon in the collective dynamics of neural network. Here, we propose to use the spiking dynamics and collective synchronization of coupled photonic spiking neurons for noisy image segmentation. Based on the synchronization mechanism and synchronization control, the noised pattern segmentation is demonstrated numerically. This work provides insight into the possible application based on the collective dynamics of large-scale photonic networks and opens a way for ultra-high speed image processing.
Asunto(s)
Inteligencia Artificial , Neuronas , Neuronas/fisiología , Redes Neurales de la Computación , Óptica y Fotónica , Fotones , Potenciales de Acción/fisiología , Modelos NeurológicosRESUMEN
We introduce a supervised learning algorithm for photonic spiking neural network (SNN) based on back propagation. For the supervised learning algorithm, the information is encoded into spike trains with different strength, and the SNN is trained according to different patterns composed of different spike numbers of the output neurons. Furthermore, the classification task is performed numerically and experimentally based on the supervised learning algorithm in the SNN. The SNN is composed of photonic spiking neuron based on vertical-cavity surface-emitting laser which is functionally similar to leaky-integrate and fire neuron. The results prove the demonstration of the algorithm implementation on hardware. To seek ultra-low power consumption and ultra-low delay, it is great significance to design and implement a hardware-friendly learning algorithm of photonic neural networks and realize hardware-algorithm collaborative computing.
RESUMEN
BACKGROUND: Liver metastases are a major contributor to the poor immunotherapy response in colorectal cancer patients. However, the distinctions in the immune microenvironment between primary tumors and liver metastases are poorly characterized. The goal of this study was to compare the expression profile of multiple immune cells to further analyze the similarities and differences between the microenvironments of liver metastases and the primary tumor. METHODS: Tissues from 17 patients with colorectal cancer who underwent resection of primary and liver metastases was analyzed using multispectral immunofluorescence. The expression of multiple immune cells (CD8, Foxp3, CD68, CD163, CD20, CD11c, CD66b, CD56, PD-L1, INF-γ, Ki67 and VEGFR-2) in the tumor center (TC), tumor invasive front (< 150 µm from the tumor center, TF) and peritumoral region (≥ 150 µm from the tumor center, PT) was evaluated via comparison. The expression of CD68 and CD163 in different regions was further analyzed based on the cell colocalization method. In addition, different immune phenotypes were studied and compared according to the degree of CD8 infiltration. RESULTS: The expression trends of 12 markers in the TF and TC regions were basically the same in the primary tumor and liver metastasis lesions. However, in comparison of the TF and PT regions, the expression trends were not identical between primary and liver metastases, especially CD163, which was more highly expressed in the PT region relative to the TF region. In the contrast of different space distribution, the expression of CD163 was higher in liver metastases than in the primary foci. Further analysis of CD68 and CD163 via colocalization revealed that the distribution of macrophages in liver metastases was significantly different from that in the primary foci, with CD68-CD163+ macrophages predominating in liver metastases. In addition, among the three immunophenotypes, CD163 expression was highest in the immune rejection phenotype. CONCLUSIONS: The immune cells found in the primary tumors of colorectal cancer differed from those in liver metastases in terms of their spatial distribution. More immunosuppressive cells were present in the liver metastases, with the most pronounced differential distribution found for macrophages. CD68-CD163+ macrophages may be associated with intrahepatic immunosuppression and weak immunotherapeutic effects.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Antígeno B7-H1 , Neoplasias Colorrectales/patología , Factores de Transcripción Forkhead , Humanos , Antígeno Ki-67 , Neoplasias Hepáticas/secundario , Pronóstico , Microambiente Tumoral , Receptor 2 de Factores de Crecimiento Endotelial VascularRESUMEN
BACKGROUND: Radiation-induced lung injury (RILI) often occurs during clinical chest radiotherapy and acute irradiation from accidental nuclear leakage. This study explored the role of monophosphoryl lipid A (MPLA) in RILI. MATERIALS AND METHODS: The entire thoracic cavity of C57BL/6N mice was irradiated at 20 Gy with or without pre-intragastric administration of MPLA. HE staining, Masson trichrome staining, and TUNEL assay were used to assess lung tissue injury after treatment. The effect of irradiation on the proliferation of MLE-12 cells was analyzed using the Clonogenic assay. The effect of MPLA on the apoptosis of MLE-12 cells was analyzed using flow cytometry. Expression of γ-H2AX and epithelial-mesenchymal transition (EMT) markers in MLE-12 cells was detected by immunofluorescence and Western blot, respectively. RESULTS: MPLA attenuated early pneumonitis and late pulmonary fibrosis after thoracic irradiation and reversed radiation-induced EMT in C57 mice. MPLA further promoted proliferation and inhibited apoptosis of irradiated MLE-12 cells in vitro. Mechanistically, the radioprotective effect of MPLA was mediated by exosomes secreted by stimulated macrophages. Macrophage-derived exosomes modulated DNA damage in MLE-12 cells after irradiation. MPLA promoted the polarization of RAW 264.7 cells to the M1 phenotype. The exosomes secreted by M1 macrophages suppressed EMT in MLE-12 cells after irradiation. CONCLUSION: MPLA is a novel treatment strategy for RILI. Exosomes derived from macrophages are key to the radioprotective role of MPLA in RILI.
Asunto(s)
Lesión Pulmonar , Traumatismos por Radiación , Ratones , Animales , Ratones Endogámicos C57BL , Pulmón/metabolismo , Macrófagos/metabolismo , Traumatismos por Radiación/metabolismo , FenotipoRESUMEN
BACKGROUND: Endocapillary hypercellularity (ECHC) is commonly seen in class IV lupus nephritis (LN), the most common and severe LN in children. Factors influencing early complete remission (CR) in pediatric class IV LN have been poorly described. We investigated the relationship between ECHC levels and early CR in pediatric class IV LN. METHODS: Patients with newly, simultaneously diagnosed systemic lupus erythematosus (SLE) and class IV LN by renal biopsy from 2012 to 2021 were studied. In this retrospective study, two pathologists who were blind to clinical information reviewed all pathological data retrospectively and classified glomerular lesions according to the revised criteria of the International Society of Nephrology and the Renal Pathology Society (ISN/RPS). The demographics, baseline clinical characteristics, laboratory parameters, renal histopathological findings, treatment regimen and CR at 6 months after immunosuppressive therapy were analyzed. ECHC was categorized as: > 50% (group A), 25-50% (group B) and < 25% (group C). CR was defined as absence of clinical symptoms, 24-hour urinary protein < 0.15 g, and normal levels of serum creatinine and albumin. RESULTS: Sixty-four patients were identified: 23, 15 and 26 in groups A, B and C, respectively. Group A had significantly higher levels of D-dimer, urine protein, and SLE disease activity index (SLEDAI) than groups B and C. Group C had a markedly higher estimated glomerular filtration rate (eGFR) than groups A and B. A substantially greater proportion of patients in group A had glomerular microthrombi and basement membrane thickening than in groups B and C. At 6 months post treatment, CR was achieved in 19 (82.6%), 5 (33.3%) and 11 (42.3%) in groups A, B and C, respectively (p < 0.05, group A vs groups B and C). Multiple logistic regression analysis revealed that ECHC and urine protein levels were significantly associated with CR. CONCLUSION: ECHC and urine protein levels may be valuable biomarkers for predicting early CR in pediatric class IV LN.
Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Niño , Humanos , Riñón/patología , Lupus Eritematoso Sistémico/diagnóstico , Nefritis Lúpica/tratamiento farmacológico , Inducción de Remisión , Estudios RetrospectivosRESUMEN
As a glycophyte plant, pepper (Capsicum annuum L.) is widely cultivated worldwide, but its growth is susceptible to salinity damage, especially at the seedling stage. Here, we conducted a study to determine the physiological and transcriptional differences between two genotype seedlings (P300 and 323F3) with contrasting tolerance under salt stress. The P300 seedlings were more salt-tolerant and had higher K+ contents, higher antioxidase activities, higher compatible solutes, and lower Na+ contents in both their roots and their leaves than the 323F3 seedlings. During RNA-seq analysis of the roots, more up-regulated genes and fewer down-regulated genes were identified between salt-treated P300 seedlings and the controls than between salt-treated 323F3 and the controls. Many ROS-scavenging genes and several SOS pathway genes were significantly induced by salt stress and exhibited higher expressions in the salt-treated roots of the P300 seedlings than those of 323F3 seedlings. Moreover, biosynthesis of the unsaturated fatty acids pathway and protein processing in the endoplasmic reticulum pathway were deeply involved in the responses of P300 to salt stress, and most of the differentially expressed genes involved in the two pathways, including the genes that encode mega-6 fatty acid desaturases and heat-shock proteins, were up-regulated. We also found differences in the hormone synthesis and signaling pathway genes in both the P300 and 323F3 varieties under salt stress. Overall, our results provide valuable insights into the physiological and molecular mechanisms that affect the salt tolerance of pepper seedlings, and present some candidate genes for improving salt tolerance in pepper.
Asunto(s)
Tolerancia a la Sal , Plantones , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , TranscriptomaRESUMEN
Chlorophenols (CPs) and phenol are abundant in thermal and combustion procedures, such as stack gas production, industrial incinerators, metal reclamation, etc., which are key precursors for the formation of polychlorinated naphthalenes (PCNs). CPs and phenol can react with H or OH radicals to form chlorophenoxy radicals (CPRs) and phenoxy radical (PhR). The self-condensation of CPRs or cross-condensation of PhR with CPRs is the initial and most important step for PCN formation. In this work, detailed thermodynamic and kinetic calculations were carried out to investigate the PCN formation mechanisms from PhR with 2-CPR/3-CPR. Several energetically advantageous formation pathways were obtained. The rate constants of key elementary steps were calculated over 600~1200 K using the canonical variational transition-state theory (CVT) with the small curvature tunneling (SCT) contribution method. The mechanisms were compared with the experimental observations and our previous works on the PCN formation from the self-condensation of 2-CPRs/3-CPRs. This study shows that naphthalene and 1-monochlorinated naphthalene (1-MCN) are the main PCN products from the cross-condensation of PhR with 2-CPR, and naphthalene and 2-monochlorinated naphthalene (2-MCN) are the main PCN products from the cross-condensation of PhR with 3-CPR. Pathways terminated with Cl elimination are preferred over those terminated with H elimination. PCN formation from the cross-condensation of PhR with 3-CPR can occur much easier than that from the cross-condensation of PhR with 2-CPR. This study, along with the study of PCN formation from the self-condensation 2-CPRs/3-CPRs, can provide reasonable explanations for the experimental observations that the formation potential of naphthalene is larger than that of 1-MCN using 2-CP as a precursor, and an almost equal yield of 1-MCN and 2-MCN can be produced with 3-CP as a precursor.
Asunto(s)
Clorofenoles , Naftalenos , FenolesRESUMEN
Nitrous acid (HONO) is a major source of hydroxyl (OH) radicals, and identifying its source is crucial to atmospheric chemistry. Here, a new formation route of HONO from the reaction of NO with Cl radicals with the aid of one or two water molecules [(Cl) (NO) (H2O)n (n = 1-2)] as well as on the droplet surface was found by Born-Oppenheimer molecular dynamic simulation and metadynamic simulation. The (Cl) (NO) (H2O)1 (monohydrate) system exhibited a free-energy barrier of approximately 0.95 kcal mol-1, whereas the (Cl) (NO) (H2O)2 (dihydrate) system was barrierless. For the dihydrate system and the reaction of NO with Cl radicals on the droplet surface, only one water molecule participated in the reaction and the other acted as the "solvent" molecule. The production rates of HONO suggested that the monohydrate system ([NO] = 8.56 × 1012 molecule cm-3, [Cl] = 8.00 × 106 molecule cm-3, [H2O] = 5.18 × 1017 molecule cm-3) could account for 40.3% of the unknown HONO production rate (Punknown) at site 1 and 53.8% of Punknown at site 2 in the East China Sea. This study identified the importance of the reaction system of NO, Cl, and water molecules in the formation of HONO in the marine boundary layer region.
Asunto(s)
Atmósfera , Agua , China , Radical Hidroxilo , Ácido Nitroso/análisisRESUMEN
Ticks are obligate blood-sucking parasitic arthropods. When sucking the blood of hosts, they can also transmit a variety of pathogens to hosts that severely endanger the health of humans and animals. The spermatheca is an organ for the storage and protection of sperm and an important component of the reproductive system of female ticks. The spermatheca content changes dramatically over time after copulation. In particular, some proteins and polypeptide substances can influence the physiological functions of female ticks and promote blood feeding and egg laying by female ticks. To investigate the molecular mechanisms underlying the productive process of Haemaphysalis longicornis, data-independent acquisition (DIA) quantitative proteomics technology was used to perform in-depth research of the dynamic changes in all proteins in the spermatheca of ticks within a short time after copulation to look for key proteins in the spermatheca contents after copulation that affect the reproduction of female ticks in order to provide meaningful information for the comprehensive prevention and control of ticks.
Asunto(s)
Ixodidae , Garrapatas , Animales , Copulación , Femenino , Proteómica , ReproducciónRESUMEN
Radiotherapy is an important strategy for NSCLC. However, although a variety of comprehensive radiotherapy-based treatments have dominated the treatment of NSCLC, it cannot be avoided to overcome the growing radioresistance during radiotherapy. The purpose of this study was to elucidate the radiosensitizing effects of NSCLC via knockdown GTSE1 expression and its mechanism. Experiments were performed by using multiple NSCLC cells such as A549, H460 and H1299. Firstly, we found GTSE1 conferred to radioresistance via clonogenic assay and apoptosis assay. Then, we detected the level of DNA damage through comet assay and γH2AX foci, which we could clearly observe knockdown GTSE1 enhance DNA damage after IR. Furthermore, through using laser assay and detecting DNA damage repair early protein expression, we found radiation could induce GTSE1 recruited to DSB site and initiate DNA damage response. Our finding demonstrated that knockdown GTSE1 enhances radiosensitivity in NSCLC through DNA damage repair pathway. This novel observation may have therapeutic implications to improve therapeutic efficacy of radiation.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Daño del ADN , Reparación del ADN , Técnicas de Silenciamiento del Gen , Neoplasias Pulmonares/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Tolerancia a Radiación , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Humanos , ARN Interferente Pequeño/metabolismo , Tolerancia a Radiación/genética , Tolerancia a Radiación/efectos de la radiación , Radiación IonizanteRESUMEN
Radiotherapy is one of the most important treatments for chest tumours. Although there are plenty of strategies to prevent damage to normal lung tissues, it cannot be avoided with the emergence of radiation-induced lung injury. The purpose of this study was to investigate the potential radioprotective effects of glucosamine, which exerted anti-inflammatory activity in joint inflammation. In this study, we found glucosamine relieved inflammatory response and structural damages in lung tissues after radiation via HE staining. Then, we detected the level of epithelial-mesenchymal transition marker in vitro and in vivo, which we could clearly observe that glucosamine treatment inhibited epithelial-mesenchymal transition. Besides, we found glucosamine could inhibit apoptosis and promote proliferation of normal lung epithelial cells in vitro caused by radiation. In conclusion, our data showed that glucosamine alleviated radiation-induced lung injury via inhibiting epithelial-mesenchymal transition, which indicated glucosamine could be a novel potential radioprotector for radiation-induced lung injury.
Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Antiinflamatorios/uso terapéutico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glucosamina/uso terapéutico , Pulmón/efectos de la radiación , Fibrosis Pulmonar/prevención & control , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Neumonitis por Radiación/prevención & control , Protectores contra Radiación/uso terapéutico , Células Epiteliales Alveolares/efectos de la radiación , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Evaluación Preclínica de Medicamentos , Femenino , Rayos gamma/efectos adversos , Glucosamina/farmacología , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/etiología , Neumonitis por Radiación/etiología , Protectores contra Radiación/farmacología , RatasRESUMEN
BACKGROUND: Fusarium ear rot (FER) caused by Fusarium verticillioides is a major disease of maize that reduces grain yield and quality globally. However, there have been few reports of major loci for FER were verified and cloned. RESULT: To gain a comprehensive understanding of the genetic basis of natural variation in FER resistance, a recombinant inbred lines (RIL) population and one panel of inbred lines were used to map quantitative trait loci (QTL) for resistance. As a result, a total of 10 QTL were identified by linkage mapping under four environments, which were located on six chromosomes and explained 1.0-7.1% of the phenotypic variation. Epistatic mapping detected four pairs of QTL that showed significant epistasis effects, explaining 2.1-3.0% of the phenotypic variation. Additionally, 18 single nucleotide polymorphisms (SNPs) were identified across the whole genome by genome-wide association study (GWAS) under five environments. Compared linkage and association mapping revealed five common intervals located on chromosomes 3, 4, and 5 associated with FER resistance, four of which were verified in different near-isogenic lines (NILs) populations. GWAS identified three candidate genes in these consistent intervals, which belonged to the Glutaredoxin protein family, actin-depolymerizing factors (ADFs), and AMP-binding proteins. In addition, two verified FER QTL regions were found consistent with Fusarium cob rot (FCR) and Fusarium seed rot (FSR). CONCLUSIONS: These results revealed that multi pathways were involved in FER resistance, which was a complex trait that was controlled by multiple genes with minor effects, and provided important QTL and genes, which could be used in molecular breeding for resistance.