Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Geroscience ; 46(1): 1319-1330, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37548882

RESUMEN

Deteriorations in slow wave sleep (SWS) have been linked to brain aging and Alzheimer's disease (AD), possibly due to its key role in clearance of amyloid-beta and tau (Aß/tau), two pathogenic hallmarks of AD. Spermidine administration has been shown to improve sleep quality in animal models. So far, the association between spermidine levels in humans and parameters of SWS physiology are unknown but may be valuable for therapeutic strategies. Data from 216 participants (age range 50-81 years) of the population-based Study of Health in Pomerania TREND were included in our analysis. We investigated associations between spermidine plasma levels, key parameters of sleep macroarchitecture and microarchitecture that were previously associated with AD pathology, and brain health measured via a marker of structural brain atrophy (AD score). Higher spermidine levels were significantly associated with lower coupling between slow oscillations and spindle activity. No association was evident for SWS, slow oscillatory, and spindle activity throughout non-rapid eye movement sleep. Furthermore, elevated spermidine blood levels were significantly associated with a higher AD score, while sleep markers revealed no association with AD score. The association between higher spermidine levels and brain health was not mediated by coupling between slow oscillations and spindle activity. We report that higher spermidine blood levels are associated not only with deteriorated brain health but also with less advantageous markers of sleep quality in older adults. Future studies need to evaluate whether sleep, spermidine, and Aß/tau deposition are interrelated and whether sleep may play a mediating role.


Asunto(s)
Enfermedad de Alzheimer , Espermidina , Animales , Humanos , Anciano , Anciano de 80 o más Años , Sueño/fisiología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo
2.
Front Neuroinform ; 17: 1086634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938361

RESUMEN

Manual sleep scoring for research purposes and for the diagnosis of sleep disorders is labor-intensive and often varies significantly between scorers, which has motivated many attempts to design automatic sleep stage classifiers. With the recent introduction of large, publicly available hand-scored polysomnographic data, and concomitant advances in machine learning methods to solve complex classification problems with supervised learning, the problem has received new attention, and a number of new classifiers that provide excellent accuracy. Most of these however have non-trivial barriers to use. We introduce the Greifswald Sleep Stage Classifier (GSSC), which is free, open source, and can be relatively easily installed and used on any moderately powered computer. In addition, the GSSC has been trained to perform well on a large variety of electrode set-ups, allowing high performance sleep staging with portable systems. The GSSC can also be readily integrated into brain-computer interfaces for real-time inference. These innovations were achieved while simultaneously reaching a level of accuracy equal to, or exceeding, recent state of the art classifiers and human experts, making the GSSC an excellent choice for researchers in need of reliable, automatic sleep staging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA