RESUMEN
A hallmark of Listeria (L.) monocytogenes pathogenesis is bacterial escape from maturing entry vacuoles, which is required for rapid bacterial replication in the host cell cytoplasm and cell-to-cell spread. The bacterial transcriptional activator PrfA controls expression of key virulence factors that enable exploitation of this intracellular niche. The transcriptional activity of PrfA within infected host cells is controlled by allosteric coactivation. Inhibitory occupation of the coactivator site has been shown to impair PrfA functions, but consequences of PrfA inhibition for L. monocytogenes infection and pathogenesis are unknown. Here we report the crystal structure of PrfA with a small molecule inhibitor occupying the coactivator site at 2.0 Å resolution. Using molecular imaging and infection studies in macrophages, we demonstrate that PrfA inhibition prevents the vacuolar escape of L. monocytogenes and enables extensive bacterial replication inside spacious vacuoles. In contrast to previously described spacious Listeria-containing vacuoles, which have been implicated in supporting chronic infection, PrfA inhibition facilitated progressive clearance of intracellular L. monocytogenes from spacious vacuoles through lysosomal degradation. Thus, inhibitory occupation of the PrfA coactivator site facilitates formation of a transient intravacuolar L. monocytogenes replication niche that licenses macrophages to effectively eliminate intracellular bacteria. Our findings encourage further exploration of PrfA as a potential target for antimicrobials and highlight that intra-vacuolar residence of L. monocytogenes in macrophages is not inevitably tied to bacterial persistence.
Asunto(s)
Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Macrófagos/microbiología , Vacuolas/microbiología , Virulencia/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
MRSA periprosthetic 1 joint infection (PJI) can be challenging to treat due to biofilm formation, alongside sometimes limited vancomycin activity (1-3). .
RESUMEN
A novel five-component diastereoselective synthesis of polysubstituted 2-piperidinones is reported. The Knoevenagel condensation-Michael addition-Mannich cascade of two equivalents of aromatic aldehydes, nitriles, dialkyl malonates and ammonium acetate or aqueous ammonia in alcohols provides convenient access to alkyl (3SR,4RS,6SR)-5,5-dicyano-2-oxo-4,6-diarylpiperidine-3-carboxylates with three stereocenters in 52-90% or dialkyl (2SR,3RS,4RS,5SR)-2,4-diaryl-3-cyano-6-oxopiperidine-3,5-dicarboxylates with four stereocenters in 38-88%. The formation of products was highly stereoselective, with only one diastereomer formed. Ammonium acetate or aqueous ammonia plays a role both as a catalyst and as a nitrogen source. 2,4,6-triaryl-3,3,5,5-tetracyanopiperidines were obtained as a side products in the reactions with nitro-substituted aldehydes or with ethyl and n-propyl cyanoacetates. A series of 14 2-piperidinones and piperidines was assessed for antimicrobial activity against a panel of five bacteria and two fungi; no significant activity was observed. Two side piperidines with nitro substituents in aromatic ring possess bacteriostatic action against S. aureus ATCC 43300 and A. baumannii ATCC 19606 at 32 ug/mL.
Asunto(s)
Acetatos/química , Aldehídos/química , Malonatos/química , Nitrilos/química , Piperidonas/química , Piperidonas/síntesis química , Acinetobacter baumannii/efectos de los fármacos , Catálisis/efectos de los fármacos , Piperidinas/síntesis química , Piperidinas/química , Piperidinas/farmacología , Piperidonas/farmacología , Staphylococcus aureus/efectos de los fármacos , EstereoisomerismoRESUMEN
The emerging threat of infections caused by highly drug-resistant bacteria has prompted a resurgence in the use of the lipodecapeptide antibiotics polymyxin B and colistin as last resort therapies. Given the emergence of resistance to these drugs, there has also been a renewed interest in the development of next generation polymyxins with improved therapeutic indices and spectra of action. We report structure-activity studies of 36 polymyxin lipononapeptides structurally characterised by an exocyclic FA-Thr²-Dab³ lipodipeptide motif instead of the native FA-Dab¹-Thr²-Dab³ tripeptide motif found in polymyxin B, removing one of the positively charged residues believed to contribute to nephrotoxicity. The compounds were prepared by solid phase synthesis using an on-resin cyclisation approach, varying the fatty acid and the residues at position 2 (P2), P3 and P4, then assessing antimicrobial potency against a panel of Gram-negative bacteria, including polymyxin-resistant strains. Pairwise comparison of N-acyl nonapeptide and decapeptide analogues possessing different fatty acids demonstrated that antimicrobial potency is strongly influenced by the N-terminal L-Dab-1 residue, contingent upon the fatty acid. This study highlights that antimicrobial potency may be retained upon truncation of the N-terminal L-Dab-1 residue of the native exocyclic lipotripeptide motif found in polymyxin B. The strategy may aid in the design of next generation polymyxins.
Asunto(s)
Antiinfecciosos/química , Péptidos/química , Polimixina B/química , Relación Estructura-Actividad , Antiinfecciosos/farmacología , Proliferación Celular/efectos de los fármacos , Ácidos Grasos/química , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Polimixina B/farmacologíaRESUMEN
The first synthesis of octapeptin C4 was achieved using a combination of solid phase synthesis and off-resin cyclisation. Octapeptin C4 displayed antibiotic activity against multi-drug resistant, NDM-1 and polymyxin-resistant Gram-negative bacteria, with moderate activity against Staphylococcus aureus. The linear analogue of octapeptin C4 was also prepared, which showed reduced activity.
Asunto(s)
Antibacterianos/farmacología , Lipopéptidos/farmacología , Péptidos Cíclicos/farmacología , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Ciclización , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/efectos de los fármacos , Lipopéptidos/síntesis química , Lipopéptidos/toxicidad , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/toxicidad , Polimixina B/farmacología , Técnicas de Síntesis en Fase Sólida , Staphylococcus aureus/efectos de los fármacosRESUMEN
Dalbavancin, a semi-synthetic glycopeptide with enhanced antibiotic activity compared to vancomycin and teicoplanin, binds to the C-terminal lysyl-d-alanyl-d-alanine subunit of Lipid II, inhibiting peptidoglycan biosynthesis. In this study, micro-calorimetry and electrospray ionization (ESI)-MS have been used to investigate the relationship between oligomerisation of dalbavancin and binding of a Lipid II peptide mimic, diacetyl-Lys-d-Ala-d-Ala (Ac2-Kaa). Dalbavancin dimerised strongly in an anti-cooperative manner with ligand-binding, as was the case for ristocetin A, but not for vancomycin and teicoplanin. Dalbavancin and ristocetin A both adopt an 'closed' conformation upon ligand binding, suggesting anti-cooperative dimerisation with ligand-binding may be a general feature of dalbavancin/ristocetin A-like glycopeptides. Understanding these effects may provide insight into design of novel dalbavancin derivatives with cooperative ligand-binding and dimerisation characteristics that could enhance antibiotic activity.
Asunto(s)
Antibacterianos/química , Glicopéptidos/química , Teicoplanina/análogos & derivados , Antibacterianos/síntesis química , Sitios de Unión , Calorimetría , Dimerización , Ligandos , Modelos Moleculares , Conformación Molecular , Ristocetina/química , Soluciones , Espectrometría de Masa por Ionización de Electrospray , Teicoplanina/síntesis química , Teicoplanina/químicaRESUMEN
Bacteremic Streptococcus pneumoniae pneumonia is one of the most severe forms of invasive pneumococcal disease (IPD) and with particularly high case-fatality rates among the elderly and individuals with comorbidities, exacerbated by rising antibiotic resistance and time to initiation of therapy. Here, we examined the efficacy of the preclinical "vancapticin" glycopeptide MCC5145 against fulminant infection by S. pneumoniae serotype 2 strain D39 in a bioluminescent, neutropenic mouse model of bacteremic pneumonia. MCC5145 is a semisynthetic vancomycin derivative chemically modified at the C-terminus with a membrane-targeting motif designed to preferentially bind the anionic bacterial surface. We show that similar to vancomycin, subcutaneous administration of MCC5145 to mice 1 day after intranasal infection with a bioluminescent derivative of S. pneumoniae D39 elicited time and concentration-dependent reduction in total flux in the lungs and blood. Together, our finding supports the further development of MCC5145 as a potential new treatment option for pneumonia and/or bacteremic pneumonia in clinical settings, particularly for immunocompromised individuals. IMPORTANCE S. pneumoniae (the pneumococcus) causes severe community acquired lung and blood infection, especially among the elderly and people with underlying medical conditions and/or weakened immune systems. The rising incidence of antibiotic resistance and delays between diagnosis of infection and commencement of effective therapy make treatment difficult and result in high mortality rates. In this work, we show that a new derivative (MCC5145) of an existing antibiotic (vancomycin) rapidly eradicated lethal pneumococcal challenge from the lungs and blood of mice with a suppressed immune system. Our findings support that MCC5145 is a promising option for the treatment of lung and blood infections caused by the pneumococcus at point-of-care settings, particularly for the elderly and individuals with a weakened immune system.
RESUMEN
Drug-resistant Gram-positive bacterial infections are still a substantial burden on the public health system, with two bacteria (Staphylococcus aureus and Streptococcus pneumoniae) accounting for over 1.5 million drug-resistant infections in the United States alone in 2017. In 2019, 250,000 deaths were attributed to these pathogens globally. We have developed a preclinical glycopeptide antibiotic, MCC5145, that has excellent potency (MIC90 ≤ 0.06 µg/ml) against hundreds of isolates of methicillin-resistant S. aureus (MRSA) and other Gram-positive bacteria, with a greater than 1000-fold margin over mammalian cell cytotoxicity values. The antibiotic has therapeutic in vivo efficacy when dosed subcutaneously in multiple murine models of established bacterial infections, including thigh infection with MRSA and blood septicemia with S. pneumoniae, as well as when dosed orally in an antibiotic-induced Clostridioides difficile infection model. MCC5145 exhibited reduced nephrotoxicity at microbiologically active doses in mice compared to vancomycin. MCC5145 also showed improved activity against biofilms compared to vancomycin, both in vitro and in vivo, and a low propensity to select for drug resistance. Characterization of drug action using a transposon library bioinformatic platform showed a mechanistic distinction from other glycopeptide antibiotics.
Asunto(s)
Antiinfecciosos , Infecciones por Bacterias Grampositivas , Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Biopelículas , Glicopéptidos/farmacología , Glicopéptidos/uso terapéutico , Lipoglucopéptidos/uso terapéutico , Mamíferos , Ratones , Pruebas de Sensibilidad Microbiana , Streptococcus pneumoniae , Vancomicina/farmacología , Vancomicina/uso terapéuticoRESUMEN
Targeted protein degradation aims to hijack endogenous protein quality control systems to achieve direct knockdown of protein targets. This exciting technology utilizes event-based pharmacology to produce therapeutic outcomes, a feature that distinguishes it from classical occupancy-based inhibitor agents. Early degrader candidates display resilience to mutations while possessing potent nanomolar activity and high target specificity. Paired with the rapid advancement of our knowledge in the factors driving targeted degradation, the expansion of this style of therapeutic agent to a range of disease indications is eagerly awaited. In particular, the area of antibiotic discovery is sorely lacking in novel approaches, with the Antimicrobial Resistance (AMR) crisis looming as the next potential global health calamity. Here, the current advances in targeted protein degradation are highlighted, and potential approaches for designing novel antimicrobial protein degraders are proposed, ranging from adaptations of current strategies to completely novel approaches to targeted protein degradation.
Asunto(s)
Antiinfecciosos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Proteínas , ProteolisisRESUMEN
Herein we report the synthesis and microbiological evaluation of novel phenyl based bis-quaternary ammonium compounds (bis-QACs). Using a simple 2-step synthetic route from dibromo- and dihydroxybenzenes, we obtained a structurally diverse broad panel of bis-QACs with topologically distinct bridging connections between pyridinium heads. Selected analogs possessed potent broad-spectrum biocidal activity against both bacterial and fungal pathogens: methicillin-resistant Staphylococcus aureus (ATCC 43300); Escherichia coli (ATCC 25922), Klebsiella pneumonia (ATCC 700603), Acinetobacter baumannii (ATCC 19606), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (ATCC 90028), Cryptococcus neoformans var. grubii (ATCC 208821). Promising compounds displayed minimum inhibitory concentrations (MIC) values ≤0.25â µg/mL alongside improved cytotoxicity and hemolytic profiles compared to modern antiseptics. Thus, synthesized bis-QACs represent a promising class of biocides with the potential to replace existing household sanitizers.
Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Desinfectantes/farmacología , Compuestos de Amonio Cuaternario/farmacología , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Desinfectantes/síntesis química , Desinfectantes/química , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pseudomonas aeruginosa/efectos de los fármacos , Compuestos de Amonio Cuaternario/síntesis química , Compuestos de Amonio Cuaternario/química , Relación Estructura-ActividadRESUMEN
Eighteen novel gemini quaternary ammonium compounds were synthesized to examine the effect of linker nature, aliphatic chain length and their relative position on antibacterial and antifungal activity. The synthesized compounds showed strong bacteriostatic activity against a panel of both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and two fungi. Some of these compounds exhibited a wider and more potent antimicrobial spectrum than commonly-used antiseptics, such as benzalkonium chloride (BAC), cetylpyridinium chloride (CPC), chlorhexidine digluconate (CHG) and octenidine dihydrochloride (OCT).
RESUMEN
The pursuit of nontraditional antibiotics is becoming an increasingly important means to tackle seemingly insurmountable challenges faced by contemporary antibiotic researchers as they overcome the shifting landscape of bacterial pathogenesis, particularly for Gram-negative bacteria [...].
RESUMEN
In an era of multidrug-resistant bacterial infections overshadowed by a lack of innovation in the antimicrobial drug development pipeline, there has been a resurgence in multidisciplinary approaches aimed at tackling this global health problem. One such approach is to use metal complexes as a framework for new antimicrobials. Indeed, in this context, bismuth-, silver- and gold-derived compounds in particular have displayed demonstrable antimicrobial activity. In this work, we discuss the antimicrobial and antifungal activities of terpene-derived chiral palladium complexes against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Candida albicans, and Cryptococcus neoformans. It was established that all studied coordination compounds of palladium were highly active antifungal drugs. In contrast, the subset of palladacycles possessing a palladium-carbon bond were only active against the Gram-positive bacterium Staphylococcus aureus. All compounds were inactive against the Gram-negative bacteria tested.
RESUMEN
Octapeptins are naturally derived cyclic lipopeptide antibiotics with activity against a range of Gram-negative pathogens, including highly resistant strains. Octapeptin C4, an exemplar of the class, was synthesized using a combination of Fmoc solid-phase peptide synthesis (SPPS) and solution-phase cyclization. Utilizing H-L-Leu-2-chlorotrityl resin, peptide couplings were performed using HCTU and collidine in DMF. The linear sequence was terminated by N-acylation with 3-(R)-hydroxydecanoic acid. The residue Dab-2 was orthogonally protected with 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)isovaleryl group (ivDde) to enable selective side-chain deprotection prior to resin cleavage. Resin cleavage was accomplished with hexafluoroisopropanol in DCM, followed by cyclization with diphenylphosphoryl azide (DPPA) and solid sodium bicarbonate in DMF.
Asunto(s)
Lipopéptidos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Azidas , Técnicas de Química Sintética , Cromatografía Líquida de Alta Presión , Ciclización , Hidrólisis , Lipopéptidos/aislamiento & purificación , Estructura Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacologíaRESUMEN
The discovery of novel antibiotics is essential to combat the rise of antimicrobial resistance. While a number of initiatives are focused on advancing promising leads into the clinic, there is a dearth of effort at stimulating the early stage discovery. We present one pathway that has successfully demonstrated an ability to revitalize fundamental research and reengage researchers.
Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Antibacterianos/uso terapéuticoRESUMEN
New antibiotics are urgently needed to address increasing rates of multidrug resistant infections. Seventy-six diversely functionalized compounds, comprising five structural scaffolds, were synthesized and tested for their ability to inhibit microbial growth. Twenty-six compounds showed activity in the primary phenotypic screen at the Community for Open Antimicrobial Drug Discovery (CO-ADD). Follow-up testing of active molecules confirmed that two unnatural dipeptides inhibit the growth of Cryptococcus neoformans with a minimum inhibitory concentration (MIC) ≤ 8 µg/mL. Syntheses were carried out by undergraduate students at five schools implementing Distributed Drug Discovery (D3) programs. This report showcases that a collaborative research and educational process is a powerful approach to discover new molecules inhibiting microbial growth. Educational gains for students engaged in this project are highlighted in parallel to the research advances. Aspects of D3 that contribute to its success, including an emphasis on reproducibility of procedures, are discussed to underscore the power of this approach to solve important research problems and to inform other coupled chemical biology research and teaching endeavors.
Asunto(s)
Antiinfecciosos/farmacología , Educación/organización & administración , Relaciones Interinstitucionales , Afiliación Organizacional , Humanos , Pruebas de Sensibilidad Microbiana , Reproducibilidad de los ResultadosRESUMEN
The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum ß-lactamase (ESBL)-producing bacteria is a critical threat to human health, and alternative treatment strategies are urgently required. We investigated the ability of the hydroxyquinoline analog ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 resensitized Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less toxic next-generation polymyxin derivative FADDI-287, in vitro. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin-resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + polymyxin (colistin or FADDI-287) for the treatment of Gram-negative sepsis in immunocompetent mice. In comparison to polymyxin alone, the combination of PBT2 + polymyxin improved survival and reduced bacterial dissemination to the lungs and spleen of infected mice. These data present a treatment modality to break antibiotic resistance in high-priority polymyxin-resistant Gram-negative pathogens.
Asunto(s)
Proteínas de Escherichia coli , Enfermedades Neurodegenerativas , Preparaciones Farmacéuticas , Sepsis , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Colistina/farmacología , Reposicionamiento de Medicamentos , Farmacorresistencia Bacteriana , Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Proteínas de Escherichia coli/farmacología , Klebsiella pneumoniae , Ratones , Pruebas de Sensibilidad Microbiana , Sepsis/tratamiento farmacológicoRESUMEN
Vancomycin was bactericidal against Clostridium difficile at eightfold the minimum inhibitory concentration (MIC) using a traditional minimum bactericidal concentration (MBC) assay. However, at higher concentrations up to 64 × MIC, vancomycin displayed a paradoxical "more-drug-kills-less" Eagle effect against C. difficile. To overcome challenges associated with performing the labor-intensive agar-based MBC method under anaerobic growth conditions, we investigated an alternative more convenient ATP-bioluminescence assay to assess the Eagle effect in C. difficile. The commercial BacTiter-GloTM assay is a homogenous method to determine bacterial viability based on quantification of bacterial ATP as a marker for metabolic activity. The ATP-bioluminescence assay was advantageous over the traditional MBC-type assay in detecting the Eagle effect because it reduced assay time and was simple to perform; measurement of viability could be performed in less than 10 min outside of the anaerobic chamber. Using this method, we found C. difficile survived clinically relevant, high concentrations of vancomycin (up to 2048 µg/mL). In contrast, C. difficile did not survive high concentrations of metronidazole or fidaxomicin. The Eagle effect was also detected for telavancin, but not for teicoplanin, dalbavancin, oritavancin, or ramoplanin. All four pathogenic strains of C. difficile tested consistently displayed Eagle effect resistance to vancomycin, but not metronidazole or fidaxomicin. These results suggest that Eagle effect resistance to vancomycin in C. difficile could be more prevalent than previously appreciated, with potential clinical implications. The ATP-Bioluminescence assay can thus be used as an alternative to the agar-based MBC assay to characterize the Eagle effect against a variety of antibiotics, at a wide-range of concentrations, with much greater throughput. This may facilitate improved understanding of Eagle effect resistance and promote further research to understand potential clinical relevance.
RESUMEN
Glycopeptide antibiotics (GPAs) are a key weapon in the fight against drug resistant bacteria, with vancomycin still a mainstream therapy against serious Gram-positive infections more than 50 years after it was first introduced. New, more potent semisynthetic derivatives that have entered the clinic, such as dalbavancin and oritavancin, have superior pharmacokinetic and target engagement profiles that enable successful treatment of vancomycin-resistant infections. In the face of resistance development, with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative infections combined, further improvements are desirable to ensure the Gram-positive armamentarium is adequately maintained for future generations. A range of modified glycopeptides has been generated in the past decade via total syntheses, semisynthetic modifications of natural products, or biological engineering. Several of these have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical toxicity; some may be suitable for formal preclinical development. The natural product monobactam, cephalosporin, and ß-lactam antibiotics all spawned multiple generations of commercially and clinically successful semisynthetic derivatives. Similarly, next-generation glycopeptides are now technically well positioned to advance to the clinic, if sufficient funding and market support returns to antibiotic development.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Desarrollo de Medicamentos , Glicopéptidos/química , Glicopéptidos/farmacología , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas , Farmacorresistencia Bacteriana , Bacterias Grampositivas/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Estructura Molecular , Relación Estructura-ActividadRESUMEN
The public health threat posed by a looming 'post-antibiotic' era necessitates new approaches to antibiotic discovery. Drug development has typically avoided exploitation of membrane-binding properties, in contrast to nature's control of biological pathways via modulation of membrane-associated proteins and membrane lipid composition. Here, we describe the rejuvenation of the glycopeptide antibiotic vancomycin via selective targeting of bacterial membranes. Peptide libraries based on positively charged electrostatic effector sequences are ligated to N-terminal lipophilic membrane-insertive elements and then conjugated to vancomycin. These modified lipoglycopeptides, the 'vancapticins', possess enhanced membrane affinity and activity against methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive bacteria, and retain activity against glycopeptide-resistant strains. Optimised antibiotics show in vivo efficacy in multiple models of bacterial infection. This membrane-targeting strategy has potential to 'revitalise' antibiotics that have lost effectiveness against recalcitrant bacteria, or enhance the activity of other intravenous-administered drugs that target membrane-associated receptors.