Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(20): e2303846121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709920

RESUMEN

Habitat loss and isolation caused by landscape fragmentation represent a growing threat to global biodiversity. Existing theory suggests that the process will lead to a decline in metapopulation viability. However, since most metapopulation models are restricted to simple networks of discrete habitat patches, the effects of real landscape fragmentation, particularly in stochastic environments, are not well understood. To close this major gap in ecological theory, we developed a spatially explicit, individual-based model applicable to realistic landscape structures, bridging metapopulation ecology and landscape ecology. This model reproduced classical metapopulation dynamics under conventional model assumptions, but on fragmented landscapes, it uncovered general dynamics that are in stark contradiction to the prevailing views in the ecological and conservation literature. Notably, fragmentation can give rise to a series of dualities: a) positive and negative responses to environmental noise, b) relative slowdown and acceleration in density decline, and c) synchronization and desynchronization of local population dynamics. Furthermore, counter to common intuition, species that interact locally ("residents") were often more resilient to fragmentation than long-ranging "migrants." This set of findings signals a need to fundamentally reconsider our approach to ecosystem management in a noisy and fragmented world.


Asunto(s)
Biodiversidad , Ecosistema , Dinámica Poblacional , Conservación de los Recursos Naturales , Modelos Biológicos , Animales , Modelos Teóricos
2.
Proc Natl Acad Sci U S A ; 115(19): 4897-4902, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29686089

RESUMEN

A rural environment and farming lifestyle are known to provide protection against allergic diseases. This protective effect is expected to be mediated via exposure to environmental microbes that are needed to support a normal immune tolerance. However, the triangle of interactions between environmental microbes, host microbiota, and immune system remains poorly understood. Here, we have studied these interactions using a canine model (two breeds, n = 169), providing an intermediate approach between complex human studies and artificial mouse model studies. We show that the skin microbiota reflects both the living environment and the lifestyle of a dog. Remarkably, the prevalence of spontaneous allergies is also associated with residential environment and lifestyle, such that allergies are most common among urban dogs living in single-person families without other animal contacts, and least common among rural dogs having opposite lifestyle features. Thus, we show that living environment and lifestyle concurrently associate with skin microbiota and allergies, suggesting that these factors might be causally related. Moreover, microbes commonly found on human skin tend to dominate the urban canine skin microbiota, while environmental microbes are rich in the rural canine skin microbiota. This in turn suggests that skin microbiota is a feasible indicator of exposure to environmental microbes. As short-term exposure to environmental microbes via exercise is not associated with allergies, we conclude that prominent and sustained exposure to environmental microbiotas should be promoted by urban planning and lifestyle changes to support health of urban populations.


Asunto(s)
Exposición a Riesgos Ambientales , Hipersensibilidad , Microbiota/inmunología , Piel , Animales , Perros , Femenino , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Masculino , Ratones , Piel/inmunología , Piel/microbiología , Planificación Social , Remodelación Urbana
3.
Ecol Lett ; 23(5): 851-859, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32207239

RESUMEN

It has been hypothesised that the 2-year oscillations in abundance of Xestia moths are mediated by interactions with 1-year Ophion parasitoid wasps. We tested this hypothesis by modelling a 35-year time series of Xestia and Ophion from Northern Finland. Additionally, we used DNA barcoding to ascertain the species diversity of Ophion and targeted amplicon sequencing of their gut contents to confirm their larval hosts. Modelling of the time-series data strongly supported the hypothesised host-parasitoid dynamics and that periodic occurrence of Xestia moths is mediated by Ophion. DNA barcodes revealed that Ophion included five species rather than just one while targeted amplicon sequencing verified that Ophion does parasitise Xestia. At least one Ophion species employs 1-year Syngrapha interrogationis as an alternate host, but it did not detectably affect Xestia-Ophion dynamics. We also demonstrate the previously unrecognised complexity of this system due to cryptic parasitoid diversity.


Asunto(s)
Mariposas Nocturnas , Avispas , Animales , Finlandia , Interacciones Huésped-Parásitos , Larva , Análisis de Secuencia de ADN
4.
J Allergy Clin Immunol ; 143(3): 1198-1206.e12, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30097187

RESUMEN

BACKGROUND: Sufficient exposure to natural environments, in particular soil and its microbes, has been suggested to be protective against allergies. OBJECTIVE: We aim at gaining more direct evidence of the environment-microbiota-health axis by studying the colonization of gut microbiota in mice after exposure to soil and by examining immune status in both a steady-state situation and during allergic inflammation. METHODS: The gastrointestinal microbiota of mice housed on clean bedding or in contact with soil was analyzed by using 16S rRNA gene sequencing, and the data were combined with immune parameters measured in the gut mucosa, lung tissue, and serum samples. RESULTS: We observed marked differences in the small intestinal and fecal microbiota composition between mice housed on clean bedding or in contact with soil, with a higher proportion of Bacteroidetes relative to Firmicutes in the soil group. The housing environment also influenced mouse intestinal gene expression, as shown by upregulated expression of the immunoregulatory markers IL-10, forkhead box P3, and cytotoxic T lymphocyte-associated protein 4 in the soil group. Importantly, using the murine asthma model, we found that exposure to soil polarizes the immune system toward TH1 and a higher level of anti-inflammatory signaling, alleviating TH2-type allergic responses. The inflammatory status of the mice had a marked influence on the composition of the gut microbiota, suggesting bidirectional communication along the gut-lung axis. CONCLUSION: Our results provide evidence of the role of environmentally acquired microbes in alleviating against TH2-driven inflammation, which relates to allergic diseases.


Asunto(s)
Asma/inmunología , Asma/microbiología , Microbioma Gastrointestinal , Tolerancia Inmunológica , Microbiología del Suelo , Alérgenos/inmunología , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Intestino Delgado/microbiología , Ratones Endogámicos BALB C , Ovalbúmina/inmunología , ARN Ribosómico 16S/genética , Suelo
5.
J Anim Ecol ; 88(8): 1202-1214, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31077598

RESUMEN

Inbreeding is common in nature, and many laboratory studies have documented that inbreeding depression can reduce the fitness of individuals. Demonstrating the consequences of inbreeding depression on the growth and persistence of populations is more challenging because populations are often regulated by density- or frequency-dependent selection and influenced by demographic and environmental stochasticity. A few empirical studies have shown that inbreeding depression can increase extinction risk of local populations. The importance of inbreeding depression at the metapopulation level has been conjectured based on population-level studies but has not been evaluated. We quantified the impact of inbreeding depression affecting the fitness of individuals on metapopulation persistence in heterogeneous habitat networks of different sizes and habitat configuration in a context of natural butterfly metapopulations. We developed a spatial individual-based simulation model of metapopulations with explicit genetics. We used Approximate Bayesian Computation to fit the model to extensive demographic, genetic and life-history data available for the well-studied Glanville fritillary butterfly (Melitaea cinxia) metapopulations in the Åland islands in SW Finland. We compared 18 semi-independent habitat networks differing in size and fragmentation. The results show that inbreeding is more frequent in small habitat networks, and consequently, inbreeding depression elevates extinction risks in small metapopulations. Metapopulation persistence and neutral genetic diversity maintained in the metapopulations increase with the total habitat amount in and mean patch size of habitat networks. Dispersal and mating behaviour interact with landscape structure to determine how likely it is to encounter kin while looking for mates. Inbreeding depression can decrease the viability of small metapopulations even when they are strongly influenced by stochastic extinction-colonization dynamics and density-dependent selection. The findings from this study support that genetic factors, in addition to demographic factors, can contribute to extinctions of small local populations and also of metapopulations.


Asunto(s)
Mariposas Diurnas , Depresión Endogámica , Animales , Teorema de Bayes , Ecosistema , Finlandia , Dinámica Poblacional
6.
Proc Natl Acad Sci U S A ; 113(10): 2678-83, 2016 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903642

RESUMEN

Describing the evolutionary dynamics of now extinct populations is challenging, as their genetic composition before extinction is generally unknown. The Glanville fritillary butterfly has a large extant metapopulation in the Åland Islands in Finland, but declined to extinction in the nearby fragmented southwestern (SW) Finnish archipelago in the 20th century. We genotyped museum samples for 222 SNPs across the genome, including SNPs from candidate genes and neutral regions. SW Finnish populations had significantly reduced genetic diversity before extinction, and their allele frequencies gradually diverged from those in contemporary Åland populations over 80 y. We identified 15 outlier loci among candidate SNPs, mostly related to flight, in which allele frequencies have changed more than the neutral expectation. At outlier loci, allele frequencies in SW Finland shifted in the same direction as newly established populations deviated from old local populations in contemporary Åland. Moreover, outlier allele frequencies in SW Finland resemble those in fragmented landscapes as opposed to continuous landscapes in the Baltic region. These results indicate selection for genotypes associated with good colonization capacity in the highly fragmented landscape before the extinction of the populations. Evolutionary response to habitat fragmentation may have enhanced the viability of the populations, but it did not save the species from regional extinction in the face of severe habitat loss and fragmentation. These results highlight a potentially common situation in changing environments: evolutionary changes are not strong enough to fully compensate for the direct adverse effects of environmental change and thereby rescue populations from extinction.


Asunto(s)
Mariposas Diurnas/genética , Ecosistema , Extinción Biológica , Genoma de los Insectos/genética , Polimorfismo de Nucleótido Simple , Animales , Evolución Molecular , Finlandia , Vuelo Animal , Frecuencia de los Genes , Genes de Insecto/genética , Variación Genética , Genotipo , Geografía , Islas , Selección Genética
7.
Theor Popul Biol ; 124: 31-40, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30121328

RESUMEN

Empirical studies have shown that, unlike species with specialized resource requirements, generalist species may benefit from habitat destruction. We use a family of models to probe the causes of the contrasting responses of these two types of species to habitat destruction. Our approach allows a number of mechanisms to be switched on and off, thereby making it possible to study their marginal and joint effects. Unlike many previous models, we do not assume any intrinsic competitive asymmetry between the species, and we assume pre-emptive rather than displacement competition. Under these assumptions, in the mean-field model the prevalences of all species decrease monotonically with decreasing habitat availability, independently of the degree of specialization. However, in the stochastic and spatial individual-based simulations of the same model, the specialists dominate in landscapes of high quality, whereas generalists thrive in landscapes of intermediate quality; no species persist in very poor landscapes. The same pattern also occurs in a non-spatial stochastic model but not in a deterministic spatial model, showing that demographic stochasticity plays a key role in shaping the outcome of competitive interactions.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Ecosistema , Modelos Biológicos , Simulación por Computador , Demografía , Extinción Biológica , Hongos/genética , Heterogeneidad Genética , Dinámica Poblacional , Procesos Estocásticos
8.
Duodecim ; 133(1): 19-26, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29199805

RESUMEN

The prevention of many diseases has significantly improved by intervening in known risk factors. However, the causes of the increase in allergy and type 1 diabetes are unknown. These diseases are often associated with a low-grade inflammation and immunological imbalance. The lifestyle and environment of urbanized populations have changed causing imbalance in the human normal flora and affecting immune regulation. We discuss everyday factors affecting immune regulation, using allergy as an example. Health may be promoted through the "nature step", by supporting the connection between humans and nature.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/prevención & control , Hipersensibilidad/inmunología , Hipersensibilidad/prevención & control , Inflamación/inmunología , Prevención Primaria , Ambiente , Humanos , Estilo de Vida , Factores de Riesgo
9.
J Exp Biol ; 219(Pt 10): 1488-94, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26944488

RESUMEN

Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance.


Asunto(s)
Mariposas Diurnas/fisiología , Metabolismo Energético , Vuelo Animal/fisiología , Fritillaria/parasitología , Oxígeno/metabolismo , Animales , Metabolismo Basal/efectos de los fármacos , Metabolismo Basal/fisiología , Mariposas Diurnas/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Vuelo Animal/efectos de los fármacos , Glucosa/análisis , Hipoxia/metabolismo , Masculino , Análisis de Regresión , Descanso , Inanición/metabolismo , Trehalasa/antagonistas & inhibidores , Trehalasa/metabolismo , Trehalosa/análisis
10.
J Anim Ecol ; 85(3): 638-47, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26781758

RESUMEN

Stable coexistence of ecologically identical species is not possible according to the established ecological theory. Many coexistence mechanisms have been proposed, but they all involve some form of ecological differentiation among the competing species. The aggregation model of coexistence would predict coexistence of identical species if there would be a mechanism that generates spatially aggregated distributions that are not completely correlated among the species. Our aim is to demonstrate that continued dispersal, triggered by reproductive interference between ecologically identical species, is such a mechanism. This study has been motivated by species using ephemeral patchy resources, such as decomposing fruits, fungal sporophores, carrion, and dung. We analyse an individual-based model with sexual reproduction, in which the progeny develops in ephemeral resource patches and the new generation disperses to a new set of patches. We assume spatially restricted dispersal, that patches differ in detectability, and that unmated females continue dispersal. In the model, reproductive interference (males spend some time searching for and/or attempting to mate with heterospecific females) reduces the mating rate of females, especially in the less common species, which leads to increased dispersal and reduces spatial correlation in species' distributions. For a wide range of parameter values, coexisting species show a systematic difference in their relative abundances due to two opposing forces: (1) uncommon species have reduced growth rate (Allee effect), which decreases abundance; (2) an abundance difference between the species reduces interspecific spatial correlation, which in turn reduces interspecific competition and allows the rarer species to persist at low density. Our results demonstrate a new mechanism for coexistence that is not based on ecological differentiation between species.


Asunto(s)
Ecosistema , Modelos Biológicos , Conducta Sexual Animal/fisiología , Animales , Femenino , Masculino , Dinámica Poblacional , Reproducción/fisiología , Conducta Espacial
11.
Proc Natl Acad Sci U S A ; 110(31): 12715-20, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858440

RESUMEN

The species-area relationship (SAR) gives a quantitative description of the increasing number of species in a community with increasing area of habitat. In conservation, SARs have been used to predict the number of extinctions when the area of habitat is reduced. Such predictions are most needed for landscapes rather than for individual habitat fragments, but SAR-based predictions of extinctions for landscapes with highly fragmented habitat are likely to be biased because SAR assumes contiguous habitat. In reality, habitat loss is typically accompanied by habitat fragmentation. To quantify the effect of fragmentation in addition to the effect of habitat loss on the number of species, we extend the power-law SAR to the species-fragmented area relationship. This model unites the single-species metapopulation theory with the multispecies SAR for communities. We demonstrate with a realistic simulation model and with empirical data for forest-inhabiting subtropical birds that the species-fragmented area relationship gives a far superior prediction than SAR of the number of species in fragmented landscapes. The results demonstrate that for communities of species that are not well adapted to live in fragmented landscapes, the conventional SAR underestimates the number of extinctions for landscapes in which little habitat remains and it is highly fragmented.


Asunto(s)
Ecosistema , Modelos Biológicos , Árboles , Clima Tropical
12.
Proc Biol Sci ; 282(1806): 20150173, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25854888

RESUMEN

Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly (Melitaea cinxia) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics.


Asunto(s)
Mariposas Diurnas/fisiología , Cambio Climático , Lluvia , Animales , Mariposas Diurnas/crecimiento & desarrollo , Finlandia , Larva/crecimiento & desarrollo , Larva/fisiología , Dinámica Poblacional , Estaciones del Año
13.
Mol Ecol ; 24(19): 4886-900, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26331775

RESUMEN

Insect flight is one of the most energetically demanding activities in the animal kingdom, yet for many insects flight is necessary for reproduction and foraging. Moreover, dispersal by flight is essential for the viability of species living in fragmented landscapes. Here, working on the Glanville fritillary butterfly (Melitaea cinxia), we use transcriptome sequencing to investigate gene expression changes caused by 15 min of flight in two contrasting populations and the two sexes. Male butterflies and individuals from a large metapopulation had significantly higher peak flight metabolic rate (FMR) than female butterflies and those from a small inbred population. In the pooled data, FMR was significantly positively correlated with genome-wide heterozygosity, a surrogate of individual inbreeding. The flight experiment changed the expression level of 1513 genes, including genes related to major energy metabolism pathways, ribosome biogenesis and RNA processing, and stress and immune responses. Males and butterflies from the population with high FMR had higher basal expression of genes related to energy metabolism, whereas females and butterflies from the small population with low FMR had higher expression of genes related to ribosome/RNA processing and immune response. Following the flight treatment, genes related to energy metabolism were generally down-regulated, while genes related to ribosome/RNA processing and immune response were up-regulated. These results suggest that common molecular mechanisms respond to flight and can influence differences in flight metabolic capacity between populations and sexes.


Asunto(s)
Mariposas Diurnas/genética , Vuelo Animal , Expresión Génica , Caracteres Sexuales , Transcriptoma , Animales , Mariposas Diurnas/fisiología , Metabolismo Energético/genética , Femenino , Finlandia , Masculino , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN
14.
Syst Biol ; 63(4): 480-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24578226

RESUMEN

Competition is often thought to promote ecological diversification and thereby to facilitate the coexistence of competitors during evolutionary radiations. At large spatial scales, species may also coexist by having allopatric distributions, which raises the question about the role of range expansion in the proliferation of species during radiations. Here, we integrate a well-sampled (50 out of 74 species) and timed phylogeny of Nanos and Apotolamprus dung beetles (Canthonini) in Madagascar with data on species' geographical ranges, abundances, and body sizes. There is an overall decline in lineage accumulation through time since the colonization of northern Madagascar in the mid Miocene (24-13 Ma). A clade of 24 extant Nanos species (clade L) originating 6.0 Ma exhibits an increase in speciation rate, which is associated with a significant increase in body size and strikingly allopatric distributions of the species. Large body size typically confers a competitive advantage in dung beetles, which is here reflected by strong numerical dominance of clade L species in local communities. We suggest that the "key innovation" of large body size has allowed range expansion due to competitive release, which has created extensive opportunities for allopatric speciation and differentiation along environmental gradients. Most theories to explain diversification patterns in Madagascar rely on allopatric modes of speciation, but they fail to explain how ancestral species became widespread in the first place. The mechanism proposed here, involving range expansion following competitive release via a "key innovation", may have operated in other Malagasy taxa with large numbers of species with small geographic ranges. [biodiversity hotspot; competition; Madagascar; microendemism; radiation.].


Asunto(s)
Escarabajos/clasificación , Escarabajos/fisiología , Especiación Genética , Filogenia , Animales , Tamaño Corporal , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Escarabajos/genética , ADN-Topoisomerasas/genética , Geografía , Madagascar , Datos de Secuencia Molecular
15.
Proc Natl Acad Sci U S A ; 109(37): E2496-505, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22908265

RESUMEN

We investigated inbreeding depression and genetic load in a small (N(e) ∼ 100) population of the Glanville fritillary butterfly (Melitaea cinxia), which has been completely isolated on a small island [Pikku Tytärsaari (PT)] in the Baltic Sea for at least 75 y. As a reference, we studied conspecific populations from the well-studied metapopulation in the Åland Islands (ÅL), 400 km away. A large population in Saaremaa, Estonia, was used as a reference for estimating genetic diversity and N(e). We investigated 58 traits related to behavior, development, morphology, reproductive performance, and metabolism. The PT population exhibited high genetic load (L = 1 - W(PT)/W(ÅL)) in a range of fitness-related traits including adult weight (L = 0.12), flight metabolic rate (L = 0.53), egg viability (L = 0.37), and lifetime production of eggs in an outdoor population cage (L = 0.70). These results imply extensive fixation of deleterious recessive mutations, supported by greatly reduced diversity in microsatellite markers and immediate recovery (heterosis) of egg viability and flight metabolic rate in crosses with other populations. There was no significant inbreeding depression in most traits due to one generation of full-sib mating. Resting metabolic rate was significantly elevated in PT males, which may be related to their short lifespan (L = 0.25). The demographic history and the effective size of the PT population place it in the part of the parameter space in which models predict mutation accumulation. This population exemplifies the increasingly common situation in fragmented landscapes, in which small and completely isolated populations are vulnerable to extinction due to high genetic load.


Asunto(s)
Mariposas Diurnas/genética , Carga Genética , Genética de Población , Endogamia , Fenotipo , Análisis de Varianza , Migración Animal/fisiología , Animales , Metabolismo Basal , Mariposas Diurnas/crecimiento & desarrollo , Vuelo Animal/fisiología , Frecuencia de los Genes , Geografía , Islas , Larva/crecimiento & desarrollo , Funciones de Verosimilitud , Repeticiones de Microsatélite/genética , Dinámica Poblacional , Federación de Rusia
16.
Proc Natl Acad Sci U S A ; 109(21): 8334-9, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22566627

RESUMEN

Rapidly declining biodiversity may be a contributing factor to another global megatrend--the rapidly increasing prevalence of allergies and other chronic inflammatory diseases among urban populations worldwide. According to the "biodiversity hypothesis," reduced contact of people with natural environmental features and biodiversity may adversely affect the human commensal microbiota and its immunomodulatory capacity. Analyzing atopic sensitization (i.e., allergic disposition) in a random sample of adolescents living in a heterogeneous region of 100 × 150 km, we show that environmental biodiversity in the surroundings of the study subjects' homes influenced the composition of the bacterial classes on their skin. Compared with healthy individuals, atopic individuals had lower environmental biodiversity in the surroundings of their homes and significantly lower generic diversity of gammaproteobacteria on their skin. The functional role of the gram-negative gammaproteobacteria is supported by in vitro measurements of expression of IL-10, a key anti-inflammatory cytokine in immunologic tolerance, in peripheral blood mononuclear cells. In healthy, but not in atopic, individuals, IL-10 expression was positively correlated with the abundance of the gammaproteobacterial genus Acinetobacter on the skin. These results raise fundamental questions about the consequences of biodiversity loss for both allergic conditions and public health in general.


Asunto(s)
Biodiversidad , Hipótesis de la Higiene , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Metagenoma/inmunología , Acinetobacter/inmunología , Adolescente , Alphaproteobacteria/inmunología , Bacillus/inmunología , Betaproteobacteria/inmunología , Civilización , Clostridium/inmunología , Exposición a Riesgos Ambientales , Finlandia/epidemiología , Gammaproteobacteria/inmunología , Humanos , Hipersensibilidad/epidemiología , Modelos Logísticos , Prevalencia , Distribución Aleatoria , Piel/inmunología , Piel/microbiología
17.
J Allergy Clin Immunol ; 134(6): 1301-1309.e11, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25262465

RESUMEN

BACKGROUND: The human commensal microbiota interacts in a complex manner with the immune system, and the outcome of these interactions might depend on the immune status of the subject. OBJECTIVE: Previous studies have suggested a strong allergy-protective effect for Gammaproteobacteria. Here we analyze the skin microbiota, allergic sensitization (atopy), and immune function in a cohort of adolescents, as well as the influence of Acinetobacter species on immune responses in vitro and in vivo. METHODS: The skin microbiota of the study subjects was identified by using 16S rRNA sequencing. PBMCs were analyzed for baseline and allergen-stimulated mRNA expression. In in vitro assays human monocyte-derived dendritic cells and primary keratinocytes were incubated with Acinetobacter lwoffii. Finally, in in vivo experiments mice were injected intradermally with A lwoffii during the sensitization phase of the asthma protocol, followed by readout of inflammatory parameters. RESULTS: In healthy subjects, but not in atopic ones, the relative abundance of Acinetobacter species was associated with the expression of anti-inflammatory molecules by PBMCs. Moreover, healthy subjects exhibited a robust balance between anti-inflammatory and TH1/TH2 gene expression, which was related to the composition of the skin microbiota. In cell assays and in a mouse model, Acinetobacter species induced strong TH1 and anti-inflammatory responses by immune cells and skin cells and protected against allergic sensitization and lung inflammation through the skin. CONCLUSION: These results support the hypothesis that skin commensals play an important role in tuning the balance of TH1, TH2, and anti-inflammatory responses to environmental allergens.


Asunto(s)
Acinetobacter , Hipersensibilidad/inmunología , Leucocitos Mononucleares/inmunología , Microbiota , Neumonía/inmunología , Piel/microbiología , Acinetobacter/genética , Adolescente , Alérgenos/inmunología , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Células Cultivadas , Citocinas/genética , Células Dendríticas , Perfilación de la Expresión Génica , Humanos , Queratinocitos , Leucocitos Mononucleares/metabolismo , Ratones , Ovalbúmina/inmunología , ARN Bacteriano/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S/genética , Piel/inmunología , Células TH1/inmunología , Células Th2/inmunología
18.
Bioinformatics ; 29(24): 3128-34, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24078685

RESUMEN

MOTIVATION: Current high-throughput sequencing technologies allow cost-efficient genotyping of millions of single nucleotide polymorphisms (SNPs) for hundreds of samples. However, the tools that are currently available for constructing linkage maps are not well suited for large datasets. Linkage maps of large datasets would be helpful in de novo genome assembly by facilitating comprehensive genome validation and refinement by enabling chimeric scaffold detection, as well as in family-based linkage and association studies, quantitative trait locus mapping, analysis of genome synteny and other complex genomic data analyses. RESULTS: We describe a novel tool, called Lepidoptera-MAP (Lep-MAP), for constructing accurate linkage maps with ultradense genome-wide SNP data. Lep-MAP is fast and memory efficient and largely automated, requiring minimal user interaction. It uses simultaneously data on multiple outbred families and can increase linkage map accuracy by taking into account achiasmatic meiosis, a special feature of Lepidoptera and some other taxa with no recombination in one sex (no recombination in females in Lepidoptera). We demonstrate that Lep-MAP outperforms other methods on real and simulated data. We construct a genome-wide linkage map of the Glanville fritillary butterfly (Melitaea cinxia) with over 40 000 SNPs. The data were generated with a novel in-house SOLiD restriction site-associated DNA tag sequencing protocol, which is described in the online supplementary material. AVAILABILITY AND IMPLEMENTATION: Java source code under GNU general public license with the compiled classes and the datasets are available from http://sourceforge.net/users/lep-map.


Asunto(s)
Mapeo Cromosómico/métodos , Ligamiento Genético , Proteínas de Insectos/genética , Lepidópteros/genética , Polimorfismo de Nucleótido Simple , Programas Informáticos , Animales , Biología Computacional , Bases de Datos Genéticas , Femenino , Genoma , Haplotipos , Escala de Lod , Meiosis/genética
19.
Proc Natl Acad Sci U S A ; 108(35): 14397-404, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21788506

RESUMEN

Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.


Asunto(s)
Evolución Biológica , Mariposas Diurnas/genética , Ecología , Animales , Extinción Biológica , Femenino , Polimorfismo Genético , Dinámica Poblacional , Veronica
20.
J Therm Biol ; 42: 33-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24802146

RESUMEN

Ambient temperature is an ubiquitous environmental factor affecting all organisms. Global climate change increases temperature variation and the frequency of extreme temperatures, which may pose challenges to ectotherms. Here, we examine phenotypic plasticity to temperature and genotypic effects on thermal tolerance in the Glanville fritillary butterfly (Melitaea cinxia). We found no significant difference in heat or cold tolerance in populations originating from a continental climate in China and from Finland with moderate temperature variation. Acclimation to large-amplitude temperature variation increased heat tolerance in both populations, but decreased cold tolerance and increased hsp70-2 expression in the Chinese population only. The latter result indicates a genotypic effect in the response to temperature variation. In the Finnish population, a non-synonymous SNP in the phosphoglucose isomerase (Pgi) gene was associated with heat knock-down time.


Asunto(s)
Aclimatación , Mariposas Diurnas/metabolismo , Temperatura , Animales , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA