Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 20(5): e1012240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768240

RESUMEN

Hepatitis E virus (HEV) is the leading cause of acute viral hepatitis worldwide. HEV associated pregnancy mortality has been reported as up to 30% in humans. Recent findings suggest HEV may elicit effects directly in the reproductive system with HEV protein found in the testis, viral RNA in semen, and viral replication occurring in placental cell types. Using a natural host model for HEV infection, pigs, we demonstrate infectious HEV within the mature spermatozoa and altered sperm viability from HEV infected pigs. HEV isolated from sperm remained infectious suggesting a potential transmission route via sexual partners. Our findings suggest that HEV should be explored as a possible sexually transmittable disease. Our findings propose that infection routes outside of oral and intravenous infection need to be considered for their potential to contribute to higher mortality in HEV infections when pregnancy is involved and in HEV disease in general.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Cabeza del Espermatozoide , Masculino , Virus de la Hepatitis E/fisiología , Virus de la Hepatitis E/patogenicidad , Animales , Hepatitis E/virología , Hepatitis E/transmisión , Hepatitis E/veterinaria , Porcinos , Cabeza del Espermatozoide/virología , Femenino , Embarazo , Enfermedades de los Porcinos/virología
2.
J Nanobiotechnology ; 21(1): 60, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36814238

RESUMEN

BACKGROUND: Unlike the injectable vaccines, intranasal lipid nanoparticle (NP)-based adjuvanted vaccine is promising to protect against local infection and viral transmission. Infection of ferrets with SARS-CoV-2 results in typical respiratory disease and pathology akin to in humans, suggesting that the ferret model may be ideal for intranasal vaccine studies. RESULTS: We developed SARS-CoV-2 subunit vaccine containing both Spike receptor binding domain (S-RBD) and Nucleocapsid (N) proteins (NP-COVID-Proteins) or their mRNA (NP-COVID-mRNA) and NP-monosodium urate adjuvant. Both the candidate vaccines in intranasal vaccinated aged ferrets substantially reduced the replicating virus in the entire respiratory tract. Specifically, the NP-COVID-Proteins vaccine did relatively better in clearing the virus from the nasal passage early post challenge infection. The immune gene expression in NP-COVID-Proteins vaccinates indicated increased levels of mRNA of IFNα, MCP1 and IL-4 in lungs and nasal turbinates, and IFNγ and IL-2 in lungs; while proinflammatory mediators IL-1ß and IL-8 mRNA levels in lungs were downregulated. In NP-COVID-Proteins vaccinated ferrets S-RBD and N protein specific IgG antibodies in the serum were substantially increased at both day post challenge (DPC) 7 and DPC 14, while the virus neutralizing antibody titers were relatively better induced by mRNA versus the proteins-based vaccine. In conclusion, intranasal NP-COVID-Proteins vaccine induced balanced Th1 and Th2 immune responses in the respiratory tract, while NP-COVID-mRNA vaccine primarily elicited antibody responses. CONCLUSIONS: Intranasal NP-COVID-Proteins vaccine may be an ideal candidate to elicit increased breadth of immunity against SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Humanos , Animales , Anciano , Hurones , Inmunidad Mucosa , SARS-CoV-2 , Carga Viral , Anticuerpos Antivirales , Pulmón/patología , Anticuerpos Neutralizantes , Adyuvantes Inmunológicos , Vacunas contra la COVID-19 , Vacunas de ARNm
3.
J Dairy Sci ; 104(7): 7888-7901, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33814155

RESUMEN

After parturition, dairy cows mobilize AA from skeletal muscle to meet metabolizable protein (MP) requirements. High mobilization may compromise cow health and longer-term milk production. Postpartum diets with higher MP concentrations, improved AA profiles, or MP increased at the expense of forages rather than nonforage fiber sources may attenuate muscle catabolism; however, the molecular mechanisms responsible need investigation. We evaluated mRNA expression in the longissimus dorsi of cows fed postpartum diets differing in MP concentration, AA profile, and fiber source. From 0 to 25 d after parturition, 40 multiparous cows received the following diets: (1) 13% deficient in MP (D-MP), (2) adequate in MP using primarily soy protein (A-MP), (3) adequate in MP using blends of proteins and individual AA to improve the AA profile (Blend), or (4) similar to Blend except additional protein replaced forage (Blend-fNDF). Biopsies were taken approximately -5, 7, and 25 d relative to parturition. Greater dietary MP concentration (D-MP vs. A-MP and Blend) decreased expression of genes related to protein synthesis (MTOR, RPS6KB1) and degradation (FOXO1), inflammation (IFNG, TLR4), and endoplasmic reticulum (ER) stress (HSPA5, DDIT) and increased genes associated with lipogenesis (PPARG) and glucose oxidation (LDH, MB). In Blend versus A-MP (i.e., effect of AA profile), expression related to apoptosis (CASP8) and inflammation (TNFA) decreased and genes associated with cell cycle progression (E2F1) and fast-twitch glycolytic muscle fiber type (MYH4) increased. Less forage (Blend-fNDF vs. Blend) decreased genes associated with lipogenesis (PPARG, ACACA) and ER stress (BCL2, DDIT3, EIF2AK3, PPP1R15A) and increased genes associated with inflammation (TNF), inhibition of myogenesis (MSTN), and autophagy (PEBP1). In summary and based on mRNA expression, increasing MP supply may attenuate muscle turnover and ER stress. However, an unbalanced AA supply reduced cell cycle progression and protein synthesis. Lower energy supplies may reduce cell growth and cause autophagy.


Asunto(s)
Aminoácidos , Lactancia , Animales , Bovinos , Dieta/veterinaria , Proteínas en la Dieta , Femenino , Leche , Músculo Esquelético , Periodo Periparto , ARN Mensajero/genética , Rumen
4.
Vaccines (Basel) ; 11(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38006039

RESUMEN

Swine influenza A viruses (SwIAVs) are pathogens of both veterinary and medical significance. Intranasal (IN) vaccination has the potential to reduce flu infection. We investigated the efficacy of split SwIAV H1N2 antigens adsorbed with a plant origin nanoparticle adjuvant [Nano11-SwIAV] or in combination with a STING agonist ADU-S100 [NanoS100-SwIAV]. Conventional pigs were vaccinated via IN and challenged with a heterologous SwIAV H1N1-OH7 or 2009 H1N1 pandemic virus. Immunologically, in NanoS100-SwIAV vaccinates, we observed enhanced frequencies of activated monocytes in the blood of the pandemic virus challenged animals and in tracheobronchial lymph nodes (TBLN) of H1N1-OH7 challenged animals. In both groups of the virus challenged pigs, increased frequencies of IL-17A+ and CD49d+IL-17A+ cytotoxic lymphocytes were observed in Nano11-SwIAV vaccinates in the draining TBLN. Enhanced frequency of CD49d+IFNγ+ CTLs in the TBLN and blood of both the Nano11-based SwIAV vaccinates was observed. Animals vaccinated with both Nano11-based vaccines had upregulated cross-reactive secretory IgA in the lungs and serum IgG against heterologous and heterosubtypic viruses. However, in NanoS100-SwIAV vaccinates, a slight early reduction in the H1N1 pandemic virus and a late reduction in the SwIAV H1N1-OH7 load in the nasal passages were detected. Hence, despite vast genetic differences between the vaccine and both the challenge viruses, IN vaccination with NanoS100-SwIAV induced antigen-specific moderate levels of cross-protective immune responses.

5.
Viruses ; 15(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36680135

RESUMEN

Live attenuated vaccines (LAVs) replicate in the respiratory/oral mucosa, mimic natural infection, and can induce mucosal and systemic immune responses to the full repertoire of SARS-CoV-2 structural/nonstructural proteins. Generally, LAVs produce broader and more durable protection than current COVID-19 vaccines. We generated a temperature-sensitive (TS) SARS-CoV-2 mutant TS11 via cold-adaptation of the WA1 strain in Vero E6 cells. TS11 replicated at >4 Log10-higher titers at 32 °C than at 39 °C. TS11 has multiple mutations, including those in nsp3, a 12-amino acid-deletion spanning the furin cleavage site of the S protein and a 371-nucleotide-deletion spanning the ORF7b-ORF8 genes. We tested the pathogenicity and protective efficacy of TS11 against challenge with a heterologous virulent SARS-CoV-2 D614G strain 14B in Syrian hamsters. Hamsters were randomly assigned to mock immunization-challenge (Mock-C) and TS11 immunization-challenge (TS11-C) groups. Like the mock group, TS11-vaccinated hamsters did not show any clinical signs and continuously gained body weight. TS11 replicated well in the nasal cavity but poorly in the lungs and caused only mild lesions in the lungs. After challenge, hamsters in the Mock-C group lost weight. In contrast, the animals in the TS11-C group continued gaining weight. The virus titers in the nasal turbinates and lungs of the TS11-C group were significantly lower than those in the Mock-C group, confirming the protective effects of TS11 immunization of hamsters. Histopathological examination demonstrated that animals in the Mock-C group had severe pulmonary lesions and large amounts of viral antigens in the lungs post-challenge; however, the TS11-C group had minimal pathological changes and few viral antigen-positive cells. In summary, the TS11 mutant was attenuated and induced protection against disease after a heterologous SARS-CoV-2 challenge in Syrian hamsters.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antígenos Virales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Mesocricetus , SARS-CoV-2/genética , Temperatura , Vacunas Atenuadas/genética
6.
Front Immunol ; 12: 584299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746943

RESUMEN

Parenteral administration of killed/inactivated swine influenza A virus (SwIAV) vaccine in weaned piglets provides variable levels of immunity due to the presence of preexisting virus specific maternal derived antibodies (MDA). To overcome the effect of MDA on SwIAV vaccine in piglets, we developed an intranasal deliverable killed SwIAV antigen (KAg) encapsulated chitosan nanoparticles called chitosan-based NPs encapsulating KAg (CS NPs-KAg) vaccine. Further, to target the candidate vaccine to dendritic cells and macrophages which express mannose receptor, we conjugated mannose to chitosan (mCS) and formulated KAg encapsulated mCS nanoparticles called mannosylated chitosan-based NPs encapsulating KAg (mCS NPs-KAg) vaccine. In MDA-positive piglets, prime-boost intranasal inoculation of mCS NPs-KAg vaccine elicited enhanced homologous (H1N2-OH10), heterologous (H1N1-OH7), and heterosubtypic (H3N2-OH4) influenza virus-specific secretory IgA (sIgA) antibody response in nasal passage compared to CS NPs-KAg vaccinates. In vaccinated upon challenged with a heterologous SwIAV H1N1, both mCS NPs-KAg and CS NPs-KAg vaccinates augmented H1N2-OH10, H1N1-OH7, and H3N2-OH4 virus-specific sIgA antibody responses in nasal swab, lung lysate, and bronchoalveolar lavage (BAL) fluid; and IgG antibody levels in lung lysate and BAL fluid samples. Whereas, the multivalent commercial inactivated SwIAV vaccine delivered intramuscularly increased serum IgG antibody response. In mCS NPs-KAg and CS NPs-KAg vaccinates increased H1N2-OH10 but not H1N1-OH7 and H3N2-OH4-specific serum hemagglutination inhibition titers were observed. Additionally, mCS NPs-KAg vaccine increased specific recall lymphocyte proliferation and cytokines IL-4, IL-10, and IFNγ gene expression compared to CS NPs-KAg and commercial SwIAV vaccinates in tracheobronchial lymph nodes. Consistent with the immune response both mCS NPs-KAg and CS NPs-KAg vaccinates cleared the challenge H1N1-OH7 virus load in upper and lower respiratory tract more efficiently when compared to commercial vaccine. The virus clearance was associated with reduced gross lung lesions. Overall, mCS NP-KAg vaccine intranasal immunization in MDA-positive pigs induced a robust cross-reactive immunity and offered protection against influenza virus.


Asunto(s)
Quitosano/inmunología , Inmunidad/inmunología , Vacunas contra la Influenza/inmunología , Manosa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Enfermedades de los Porcinos/inmunología , Animales , Anticuerpos Antivirales/inmunología , Células Cultivadas , Quitosano/metabolismo , Perros , Femenino , Inmunidad/efectos de los fármacos , Vacunas contra la Influenza/administración & dosificación , Células de Riñón Canino Madin Darby , Manosa/metabolismo , Nanopartículas/administración & dosificación , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Embarazo , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Vacunación/métodos , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
7.
Am J Vet Res ; 74(10): 1353-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24066921

RESUMEN

OBJECTIVE: To investigate effects of low dietary vitamin A content on antibody responses in feedlot calves inoculated with an inactivated bovine coronavirus (BCoV) vaccine. ANIMALS: 40 feedlot calves. PROCEDURES: Calves were fed diets containing high (3,300 U/kg) or low (1,100 U/kg) amounts of vitamin A beginning on the day of arrival at a feedlot (day 0) and continuing daily until the end of the study (day 140). Serum retinol concentrations were evaluated in blood samples obtained throughout the study. Calves were inoculated IM with an inactivated BCoV vaccine on days 112 and 126. Blood samples obtained on days 112 and 140 were used for assessment of BCoV-specific serum IgG1, IgG2, IgM, and IgA titers via an ELISA. RESULTS: The low vitamin A diet reduced serum retinol concentrations between days 112 and 140. After the BCoV inoculation and booster injections, predominantly serum IgG1 antibodies were induced in calves fed the high vitamin A diet; however, IgG1 titers were compromised at day 140 in calves fed the low vitamin A diet. Other isotype antibodies specific for BCoV were not affected by the low vitamin A diet. CONCLUSIONS AND CLINICAL RELEVANCE: Dietary vitamin A restriction increases marbling in feedlot cattle; however, its effect on antibody responses to vaccines is unknown. A low vitamin A diet compromised the serum IgG1 responses against inactivated BCoV vaccine, which suggested suppressed T-helper 2-associated antibody (IgG1) responses. Thus, low vitamin A diets may compromise the effectiveness of viral vaccines and render calves more susceptible to infectious disease.


Asunto(s)
Anticuerpos Antivirales/efectos de los fármacos , Bovinos/inmunología , Coronavirus Bovino/inmunología , Suplementos Dietéticos , Vacunas de Productos Inactivados/inmunología , Vitamina A/farmacología , Animales , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática/veterinaria , Inmunoglobulina G/sangre , Inyecciones Intramusculares/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no Paramétricas , Vacunas de Productos Inactivados/administración & dosificación , Vitamina A/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA