Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Ecol Appl ; 34(2): e2945, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286682

RESUMEN

Eutrophication and brownification are ongoing environmental problems affecting aquatic ecosystems. Due to anthropogenic changes, increasing amounts of organic and inorganic compounds are entering aquatic systems from surrounding catchment areas, increasing both nutrients, total organic carbon (TOC), and water color with societal, as well as ecological consequences. Several studies have focused on the ability of wetlands to reduce nutrients, whereas data on their potential to reduce TOC and water color are scarce. Here we evaluate wetlands as a potential multifunctional tool for mitigating both eutrophication and brownification. Therefore, we performed a study for 18 months in nine wetlands allowing us to estimate the reduction in concentrations of total nitrogen (TN), total phosphorus (TP), TOC and water color. We show that wetland reduction efficiency with respect to these variables was generally higher during summer, but many of the wetlands were also efficient during winter. We also show that some, but not all, wetlands have the potential to reduce TOC, water color and nutrients simultaneously. However, the generalist wetlands that reduced all four parameters were less efficient in reducing each of them than the specialist wetlands that only reduced one or two parameters. In a broader context, generalist wetlands have the potential to function as multifunctional tools to mitigate both eutrophication and brownification of aquatic systems. However, further research is needed to assess the design of the generalist wetlands and to investigate the potential of using several specialist wetlands in the same catchment.


Asunto(s)
Ecosistema , Humedales , Eutrofización , Nitrógeno , Agua
2.
Environ Sci Technol ; 57(32): 11767-11778, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37535835

RESUMEN

Climate change and eutrophication are two environmental threats that can alter the structure of freshwater ecosystems and their service functions, but we know little about how ecosystem structure and function will evolve in future scenarios of climate warming. Therefore, we created different experimental climate scenarios, including present-day conditions, a 3.0 °C increase in mean temperature, and a "heatwaves" scenario (i.e., an increase in temperature variability) to assess the effects of climate change on phytoplankton communities under simultaneous stress from eutrophication and herbicides. We show that the effects of climate warming, particularly heatwaves, are associated with elevated cyanobacterial abundances and toxin production, driven by a change from mainly nontoxic to toxic Microcystis spp. The reason for higher cyanobacterial toxin concentrations is likely an increase in abundances because under the dual pressures of climate warming and eutrophication individual Microcystis toxin-producing ability decreased. Eutrophication and higher temperatures significantly increased the biomass of Microcystis, leading to an increase in the cyanobacterial toxin concentrations. In contrast, warming alone did not produce higher cyanobacterial abundances or cyanobacterial toxin concentrations likely due to the depletion of the available nutrient pool. Similarly, the herbicide glyphosate alone did not affect abundances of any phytoplankton taxa. In the case of nutrient enrichment, cyanobacterial toxin concentrations were much higher than under warming alone due to a strong boost in biomass of potential cyanobacterial toxin producers. From a broader perspective our study shows that in a future warmer climate, nutrient loading has to be reduced if toxic cyanobacterial dominance is to be controlled.


Asunto(s)
Cianobacterias , Ecosistema , Toxinas de Cianobacterias , Eutrofización , Fitoplancton , Biomasa , Cambio Climático , Lagos
3.
J Anim Ecol ; 91(10): 2103-2112, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899786

RESUMEN

Animal migration is one of the most spectacular and visible behavioural phenomena in nature with profound implications for a range of ecological and evolutionary processes. Successful migration hinges on the ability to exploit temporary resources (e.g. food) and evade threats (e.g. predators) as they arise, and thus the timing of migration is often regarded as a dominant predictor of individual migratory success. However, with the exception of intensively studied taxa (mainly birds), relatively few studies have investigated inter-individual annual and seasonal variation in migratory timing and performance, or tested predictions on how migration across high and low predation-risk habitats may exert selection on migratory timing. In particular, studies that assess the survival consequences of variation in migratory timing remain rare, which is most likely due to the logistical challenges associated with monitoring survival success and population-level characteristics simultaneously. Here, we address the above-mentioned questions using roach Rutilus rutilus, a fish that migrates from lakes characterised by high predation risk into low-risk streams during winter. Specifically, we used individual-based tracking of roach in two European lake systems over multiple migration periods (9 and 7 years respectively), to obtain highly detailed (year-round scheduling, repeat journeys and the fate of individuals) data on the variability/synchrony of migratory timing in spring and autumn respectively. We report seasonal differences in the variability of migratory timing, with lower variance and higher migration synchrony in spring lake arrival timing as compared to autumn lake departure timing. Furthermore, the timing of autumn migration is more variable across years than the timing of spring migration. Second, we find that later arrival to the lake habitat is positively associated with apparent survival from 1 year to the next, whereas we found no effect of lake departure timing on survival probability. These findings represent rare evidence showing how intraspecific variation in timing in migratory fish differs across years and seasons, and how variation in timing can translate into survival consequences for prey in systems characterised by high predation risk.


Asunto(s)
Migración Animal , Cyprinidae , Animales , Lagos , Conducta Predatoria , Estaciones del Año
4.
Glob Chang Biol ; 27(22): 5907-5919, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390088

RESUMEN

Contemporary evidence suggests that climate change and other co-occurring large-scale environmental changes, such as eutrophication, will have a considerable impact on aquatic communities. However, the interactions of these environmental changes on trophic interactions among zooplankton remain largely unknown. Here we present results of a mesocosm experiment examining how a couple of zooplankton predator and prey taxa with different life-history strategies respond to the combined effect of an increase in temperature (4.5°C) and in eutrophication (phosphorus addition), during the crucial recruiting and growing season. We show that the addition of phosphorus alone significantly weakened the top-down effects by the cyclopoid copepod predators on their rotifer prey. In contrast, warming strengthened the top-down effects from the predator, leading to a reduction in the abundance of the rotifer prey. These effects of warming were enhanced by phosphorus addition. Together, our results demonstrate that warming made plankton prey organisms more susceptible to top-down effects from predators, but reduced their sensitivity to nutrient enrichment. In terms of the phenological effects, warming advanced the termination of diapause for both rotifers and cyclopoid copepods by about 2 weeks, but these temporal shifts, akin for both groups, resulted in no apparent trophic mismatch. Hence, from a future perspective, cyclopoid copepods are likely to benefit more from the combination of nutrient enrichment and climate warming to the detriment of their rotifer prey.


Asunto(s)
Cadena Alimentaria , Zooplancton , Animales , Cambio Climático , Eutrofización , Conducta Predatoria
5.
J Evol Biol ; 34(10): 1554-1567, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34464014

RESUMEN

Predation risk is often invoked to explain variation in stress responses. Yet, the answers to several key questions remain elusive, including the following: (1) how predation risk influences the evolution of stress phenotypes, (2) the relative importance of environmental versus genetic factors in stress reactivity and (3) sexual dimorphism in stress physiology. To address these questions, we explored variation in stress reactivity (ventilation frequency) in a post-Pleistocene radiation of live-bearing fish, where Bahamas mosquitofish (Gambusia hubbsi) inhabit isolated blue holes that differ in predation risk. Individuals of populations coexisting with predators exhibited similar, relatively low stress reactivity as compared to low-predation populations. We suggest that this dampened stress reactivity has evolved to reduce energy expenditure in environments with frequent and intense stressors, such as piscivorous fish. Importantly, the magnitude of stress responses exhibited by fish from high-predation sites in the wild changed very little after two generations of laboratory rearing in the absence of predators. By comparison, low-predation populations exhibited greater among-population variation and larger changes subsequent to laboratory rearing. These low-predation populations appear to have evolved more dampened stress responses in blue holes with lower food availability. Moreover, females showed a lower ventilation frequency, and this sexual dimorphism was stronger in high-predation populations. This may reflect a greater premium placed on energy efficiency in live-bearing females, especially under high-predation risk where females show higher fecundities. Altogether, by demonstrating parallel adaptive divergence in stress reactivity, we highlight how energetic trade-offs may mould the evolution of the vertebrate stress response under varying predation risk and resource availability.


Asunto(s)
Ciprinodontiformes , Conducta Predatoria , Animales , Femenino , Humanos , Fenotipo , Caracteres Sexuales
6.
Biol Lett ; 17(8): 20210261, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343437

RESUMEN

Solar ultraviolet radiation (UVR) is an important environmental threat for organisms in aquatic systems, but its temporally variable nature makes the understanding of its effects ambiguous. The aim of our study was to assess potential fitness costs associated with fluctuating UVR in the aquatic zooplankter Daphnia magna. We investigated individual survival, reproduction and behaviour when exposed to different UVR treatments. Individuals exposed to fluctuating UVR, resembling natural variations in cloud cover, had the lowest fitness (measured as the number of offspring produced during their lifespan). By contrast, individuals exposed to the same, but constant UVR dose had similar fitness to control individuals (not exposed to UVR), but they showed a significant reduction in daily movement. The re-occurring threat response to the fluctuating UVR treatment thus had strong fitness costs for D. magna, and we found no evidence for plastic behavioural responses when continually being exposed to UVR, despite the regular, predictable exposure schedule. In a broader context, our results imply that depending on how variable a stressor is in nature, populations may respond with alternative strategies, a framework that could promote rapid population differentiation and local adaptation.


Asunto(s)
Daphnia , Rayos Ultravioleta , Animales , Humanos , Reproducción
7.
Environ Sci Technol ; 55(8): 5272-5281, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33764736

RESUMEN

In addition to a rise in global air and water mean temperatures, extreme climate events such as heat waves are increasing in frequency, intensity, and duration in many regions of the globe. Developing a mechanistic understanding of the impacts of heat waves on key ecosystem processes and how they differ from just an increase in mean temperatures is therefore of utmost importance for adaptive management against effects of global change. However, little is known about the impact of extreme events on freshwater ecosystem processes, particularly the decomposition of macrophyte detritus. We performed a mesocosm experiment to evaluate the impact of warming and heat waves on macrophyte detrital decomposition, applied as a fixed increment (+4 °C) above ambient and a fluctuating treatment with similar energy input, ranging from 0 to 6 °C above ambient (i.e., simulating heat waves). We showed that both warming and heat waves significantly accelerate dry mass loss of the detritus and carbon (C) release but found no significant differences between the two heated treatments on the effects on detritus dry mass loss and C release amount. This suggests that moderate warming indirectly enhanced macrophyte detritus dry mass loss and C release mainly by the amount of energy input rather than by the way in which warming was provided (i.e., by a fixed increment or in heat waves). However, we found significantly different amounts of nitrogen (N) and phosphorus (P) released between the two warming treatments, and there was an asymmetric response of N and P release patterns to the two warming treatments, possibly due to species-specific responses of decomposers to short-term temperature fluctuations and litter quality. Our results conclude that future climate scenarios can significantly accelerate organic matter decomposition and C, N, and P release from decaying macrophytes, and more importantly, there are asymmetric alterations in macrophyte-derived detrital N and P release dynamic. Therefore, future climate change scenarios could lead to alterations in N/P ratios in the water column via macrophyte decomposition processes and ultimately affect the structure and function of aquatic ecosystems, especially in the plankton community.


Asunto(s)
Ecosistema , Calor , Cambio Climático , Agua Dulce , Nitrógeno , Nutrientes
8.
J Anim Ecol ; 89(11): 2596-2604, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32745243

RESUMEN

Different migratory species have evolved distinct migratory characteristics that improve fitness in their particular ecological niches. However, when such species hybridize, migratory traits from parental species can combine maladaptively and cause hybrids to fall between parental fitness peaks, with potential consequences for hybrid viability and species integrity. Here, we take advantage of a natural cross-breeding incident to study migratory behaviour in naturally occurring hybrids as well as in their parental species and explore links between migratory traits and predation risk. To achieve this, we used electronic tags and passive telemetry to record detailed individual migration patterns (timing and number of migratory trips) in two common freshwater fish species, roach Rutilus rutilus, common bream Abramis brama as well as their hybrids. Next, we scanned for tags regurgitated by a key avian predator (great cormorant Phalacrocorax carbo) at nearby roosting sites, allowing us to directly link migratory behaviour to predation risk in the wild. We found that hybrid individuals showed a higher number of short, multi-trip movements between lake and stream habitats as compared to both parental species. The mean date of first lake departure differed between bream and roach by more than 10 days, while hybrids departed in two distinct peaks that overlapped with the parental species' averages. Moreover, the probability of cormorant predation increased with multi-trip movement frequency across species and was higher for hybrids. Our data provide novel insights into hybrid viability, with links to predator-mediated ecological selection. Increased exposure to predators via maladaptive migratory behaviour reduces hybrid survival and can thereby reinforce species integrity.


Asunto(s)
Cyprinidae , Animales , Aves , Ecosistema , Lagos , Conducta Predatoria
9.
J Fish Biol ; 96(4): 1055-1059, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32060922

RESUMEN

Passive integrated transponder (PIT)-tagging is commonly used in behavioural studies of fish, although long-term evaluations of effects from tagging under natural conditions are scarce. We PIT-tagged common bream Abramis brama, European perch Perca fluviatilis, pike Esox lucius and roach Rutilus rutilus, released them in their lakes of origin and recaptured them after 103-3269 days. Overall, tagged fish did not differ in condition from non-tagged fish, except for small R. rutilus that had a lower length-specific body mass in one lake in 1 year. We conclude that PIT-tagging in general has negligible long-term effects on fish condition.


Asunto(s)
Sistemas de Identificación Animal/normas , Peces/fisiología , Tecnología de Sensores Remotos/normas , Animales , Cyprinidae , Esocidae , Lagos , Percas , Tecnología de Sensores Remotos/efectos adversos
10.
Proc Natl Acad Sci U S A ; 113(50): E8089-E8095, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911776

RESUMEN

Ecosystems can show sudden and persistent changes in state despite only incremental changes in drivers. Such critical transitions are difficult to predict, because the state of the system often shows little change before the transition. Early-warning indicators (EWIs) are hypothesized to signal the loss of system resilience and have been shown to precede critical transitions in theoretical models, paleo-climate time series, and in laboratory as well as whole lake experiments. The generalizability of EWIs for detecting critical transitions in empirical time series of natural aquatic ecosystems remains largely untested, however. Here we assessed four commonly used EWIs on long-term datasets of five freshwater ecosystems that have experienced sudden, persistent transitions and for which the relevant ecological mechanisms and drivers are well understood. These case studies were categorized by three mechanisms that can generate critical transitions between alternative states: competition, trophic cascade, and intraguild predation. Although EWIs could be detected in most of the case studies, agreement among the four indicators was low. In some cases, EWIs were detected considerably ahead of the transition. Nonetheless, our results show that at present, EWIs do not provide reliable and consistent signals of impending critical transitions despite using some of the best routinely monitored freshwater ecosystems. Our analysis strongly suggests that a priori knowledge of the underlying mechanisms driving ecosystem transitions is necessary to identify relevant state variables for successfully monitoring EWIs.


Asunto(s)
Ecosistema , Agua Dulce , Modelos Biológicos , Animales , Bioestadística , Clima , Eutrofización , Cadena Alimentaria , Lagos , Conducta Predatoria , Factores de Tiempo
11.
Glob Chang Biol ; 24(10): 4747-4757, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29963731

RESUMEN

In addition to an increase in mean temperature, extreme climatic events, such as heat waves, are predicted to increase in frequency and intensity with climate change, which are likely to affect organism interactions, seasonal succession, and resting stage recruitment patterns in terrestrial as well as in aquatic ecosystems. For example, freshwater zooplankton with different life-history strategies, such as sexual or parthenogenetic reproduction, may respond differently to increased mean temperatures and rapid temperature fluctuations. Therefore, we conducted a long-term (18 months) mesocosm experiment where we evaluated the effects of increased mean temperature (4°C) and an identical energy input but delivered through temperature fluctuations, i.e., as heat waves. We show that different rotifer prey species have specific temperature requirements and use limited and species-specific temperature windows for recruiting from the sediment. On the contrary, co-occurring predatory cyclopoid copepods recruit from adult or subadult resting stages and are therefore able to respond to short-term temperature fluctuations. Hence, these different life-history strategies affect the interactions between cyclopoid copepods and rotifers by reducing the risk of a temporal mismatch in predator-prey dynamics in a climate change scenario. Thus, we conclude that predatory cyclopoid copepods with long generation time are likely to benefit from heat waves since they rapidly "wake up" even at short temperature elevations and thereby suppress fast reproducing prey populations, such as rotifers. In a broader perspective, our findings suggest that differences in life-history traits will affect predator-prey interactions, and thereby alter community dynamics, in a future climate change scenario.


Asunto(s)
Cambio Climático , Calor , Zooplancton , Animales , Copépodos/fisiología , Ecosistema , Agua Dulce , Conducta Predatoria , Reproducción
12.
Ecology ; 98(10): 2499-2505, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28727143

RESUMEN

Many prey organisms show induced morphological responses to predators including changes in protective spine length, such as in rotifers, although previous studies have mainly focused on how prey become larger than the predator gape-size optimum. Here we show that a large-sized predator makes prey rotifers escape below the gape-size optimum of the predator by reducing spine length. In experiments and field studies we show that during part of their ontogeny fish larvae feed intensively on the common rotifer Keratella cochlearis, and that larval fish predation reduces rotifer spine length both through induction of shorter spines and selective predation on long-spined individuals. We also describe a global scale pattern in spine length of K. cochlearis, showing an increasing variance in spine length with latitude. This pattern may be explained by differences in fish reproduction from once per year at high latitudes to several times per year at lower latitudes. That spine length is adaptively adjusted to the ontogeny of a dominant predator taxa provides a novel view on our understanding of factors affecting temporal and spatial variations in prey defense morphology.


Asunto(s)
Conducta Predatoria , Rotíferos/anatomía & histología , Animales , Peces , Larva , Reproducción , Rotíferos/fisiología
13.
Glob Chang Biol ; 23(1): 108-116, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27359059

RESUMEN

Extreme climatic events, such as heat waves, are predicted to increase in frequency and intensity during the next hundred years, which may accelerate shifts in hydrological regimes and submerged macrophyte composition in freshwater ecosystems. Since macrophytes are profound components of aquatic systems, predicting their response to extreme climatic events is crucial for implementation of climate change adaptation strategies. We therefore performed an experiment in 24 outdoor enclosures (400 L) separating the impact of a 4 °C increase in mean temperature with the same increase, that is the same total amount of energy input, but resembling a climate scenario with extreme variability, oscillating between 0 °C and 8 °C above present conditions. We show that at the moderate nutrient conditions provided in our study, neither an increase in mean temperature nor heat waves lead to a shift from a plant-dominated to an algal-dominated system. Instead, we show that species-specific responses to climate change among submerged macrophytes may critically influence species composition and thereby ecosystem functioning. Our results also imply that more fluctuating temperatures affect the number of flowers produced per plant leading to less sexual reproduction. Our findings therefore suggest that predicted alterations in climate regimes may influence both plant interactions and reproductive strategies, which have the potential to inflict changes in biodiversity, community structure and ecosystem functioning.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Plantas , Agua Dulce , Calor , Reproducción
14.
Biol Lett ; 13(7)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28747533

RESUMEN

Species integrity can be challenged, and even eroded, if closely related species can hybridize and produce fertile offspring of comparable fitness to that of parental species. The maintenance of newly diverged or closely related species therefore hinges on the establishment and effectiveness of pre- and/or post-zygotic reproductive barriers. Ecological selection, including predation, is often presumed to contribute to reduced hybrid fitness, but field evidence for a predation cost to hybridization remains elusive. Here we provide proof-of-concept for predation on hybrids being a postzygotic barrier to gene flow in the wild. Cyprinid fishes commonly produce fertile, viable hybrid offspring and therefore make excellent study organisms to investigate ecological costs to hybrids. We electronically tagged two freshwater cyprinid fish species (roach Rutilus rutilus and bream Abramis brama) and their hybrids in 2005. Tagged fish were returned to their lake of origin, exposing them to natural predation risk from apex avian predators (great cormorant, Phalacrocorax carbo). Scanning for regurgitated tags under cormorant roosts 3-4 years later identified cormorant-killed individual fish and allowed us to directly test for a predation cost to hybrids in the wild. Hybrid individuals were found significantly more susceptible to cormorant predation than individuals from either parental species. Such ecological selection against hybrids contributes to species integrity, and can enhance species diversification.


Asunto(s)
Conducta Predatoria , Animales , Aves , Cyprinidae , Hibridación Genética , Lagos
15.
Ecology ; 97(2): 279-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27145603

RESUMEN

Most animals, including aquatic crustacean zooplankton, perform strong avoidance movements when exposed to a threat, such as ultraviolet radiation (UVR). We here show that the genera Daphnia and Bosmina instantly adjust their vertical position in the water in accordance with the present UVR threat, i.e., seek refuge in deeper waters, whereas other taxa show less response to the threat. Moreover, Daphnia repeatedly respond to UVR pulses, suggesting that they spend more energy on movement than more stationary taxa, for example, during days with fluctuating cloud cover, illustrating nonlethal effects in avoiding UVR threat. Accordingly, we also show that the taxa with the most contrasting behavioral responses differ considerably in photoprotection, suggesting different morphological and behavioral strategies in handling the UVR threat. In a broader context, our studies on individual and taxa specific responses to UVR provide insights into observed spatial and temporal distribution in natural ecosystems.


Asunto(s)
Reacción de Fuga/fisiología , Rayos Ultravioleta/efectos adversos , Zooplancton/clasificación , Zooplancton/fisiología , Animales , Ritmo Circadiano
16.
J Anim Ecol ; 84(5): 1187-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25823702

RESUMEN

1. Migration is a widespread phenomenon, with powerful ecological and evolutionary consequences. Morphological adaptations to reduce the energetic costs associated with migratory transport are commonly documented for migratory species. However, few studies have investigated whether variation in body morphology can be explained by variation in migratory strategy within a species. 2. We address this question in roach Rutilus rutilus, a partially migratory freshwater fish that migrates from lakes into streams during winter. We both compare body shape between populations that differ in migratory opportunity (open vs. closed lakes), and between individuals from a single population that vary in migratory propensity (migrants and residents from a partially migratory population). Following hydrodynamic theory, we posit that migrants should have a more shallow body depth, to reduce the costs associated with migrating into streams with higher flow conditions than the lakes the residents occupy all year round. 3. We find evidence both across and within populations to support our prediction, with individuals from open lakes and migrants from the partially migratory population having a more slender, shallow-bodied morphology than fish from closed lakes and all-year residents. 4. Our data suggest that a shallow body morphology is beneficial to migratory individuals and our study is one of the first to link migratory strategy and intraspecific variation in body shape.


Asunto(s)
Migración Animal , Conducta Animal/fisiología , Cyprinidae/anatomía & histología , Cyprinidae/fisiología , Animales , Lagos , Ríos , Estaciones del Año , Suecia
17.
Biol Lett ; 11(8)2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26311158

RESUMEN

Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic tags to record the migration of individual roach (Rutilus rutilus), a partially migratory fish, in the wild following exposure to manipulation of direct (predator presence/absence) and indirect (high/low roach density) perceived predation risk in experimental mesocosms. Following exposure, we released fish in their lake summer habitat and monitored individual migration to connected streams over an entire season. Individuals exposed to increased perceived direct predation risk (i.e. a live predator) showed a higher migratory propensity but no change in migratory timing, while indirect risk (i.e. roach density) affected timing but not propensity showing that elevated risk carried over to alter migratory behaviour in the wild. Our key finding demonstrates predator-driven migratory plasticity, highlighting the powerful role of predation risk for migratory decision-making and dynamics.


Asunto(s)
Cyprinidae/fisiología , Migración Animal , Animales , Esocidae , Densidad de Población , Dinámica Poblacional , Conducta Predatoria , Estaciones del Año
18.
Environ Sci Technol ; 49(1): 553-61, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25380515

RESUMEN

The use of nanoparticles in consumer products, for example, cosmetics, sunscreens, and electrical devices, has increased tremendously over the past decade despite insufficient knowledge about their effects on human health and ecosystem function. Moreover, the amount of plastic waste products that enter natural ecosystems, such as oceans and lakes, is increasing, and degradation of the disposed plastics produces smaller particles toward the nano scale. Therefore, it is of utmost importance to gain knowledge about how plastic nanoparticles enter and affect living organisms. Here we have administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene nanoparticles have severe effects on both behavior and metabolism in fish and that commonly used nanosized particles may have considerable effects on natural systems and ecosystem services derived from them.


Asunto(s)
Conducta Animal/efectos de los fármacos , Exposición a Riesgos Ambientales , Peces/metabolismo , Peces/fisiología , Nanopartículas/toxicidad , Poliestirenos/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Daphnia/fisiología , Conducta Alimentaria/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Espectroscopía de Resonancia Magnética , Metabolómica
19.
Proc Biol Sci ; 281(1788): 20140364, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24966309

RESUMEN

Natural selection shapes behaviour in all organisms, but this is difficult to study in small, millimetre-sized, organisms. With novel labelling and tracking techniques, based on nanotechnology, we here show how behaviour in zooplankton (Daphnia magna) is affected by size, morphology and previous exposure to detrimental ultraviolet radiation (UVR). All individuals responded with immediate downward swimming to UVR exposure, but when released from the threat they rapidly returned to the surface. Large individuals swam faster and generally travelled longer distances than small individuals. Interestingly, individuals previously exposed to UVR (during several generations) showed a more relaxed response to UVR and travelled shorter total distances than those that were naive to UVR, suggesting induced tolerance to the threat. In addition, animals previously exposed to UVR also had smaller eyes than the naive ones, whereas UVR-protective melanin pigmentation of the animals was similar between populations. Finally, we show that smaller individuals have lower capacity to avoid UVR which could explain patterns in natural systems of lower migration amplitudes in small individuals. The ability to change behavioural patterns in response to a threat, in this case UVR, adds to our understanding of how organisms navigate in the 'landscape of fear', and this has important implications for individual fitness and for interaction strengths in biotic interactions.


Asunto(s)
Tamaño Corporal , Daphnia/fisiología , Rayos Ultravioleta/efectos adversos , Zooplancton/fisiología , Animales , Daphnia/efectos de la radiación , Reacción de Fuga , Melaninas/fisiología , Pigmentación , Zooplancton/efectos de la radiación
20.
Oecologia ; 175(1): 231-41, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24414311

RESUMEN

Ecological regime shifts typically result in abrupt changes in ecosystem structure through several trophic levels, which leads to rapid ecosystem reconfiguration between regimes. An interesting aspect of the impact of regime shift is that alternative regimes may induce distinct shifts in energy pathways; these have been less tested than structural changes. This paper addresses this by using stable isotopes to establish the energy pathways in fish communities. We specifically focus on the impact of regime shift on changes of the energy pathways, and how the magnitude and direction of these changes affect the local community. We found that energy pathways significantly varied among the planktivorous, benthivorous, and piscivorous trophic guilds as a result of the alternative regimes. The regime shift from a clear to a turbid state altered the food web towards planktonic energy pathways and truncated food chain length, which is indicative of less ecological efficiency. This was confirmed by the adaptive foraging strategies of prevalent omnivores in the current communities. These structural and functional characteristics of trophic interactions might not facilitate classic trophic cascading effects in such a turbid regime and suppress the system's response to environmental changes, e.g., nutrient loading, and restoration efforts in turbid to clear water regime shifts.


Asunto(s)
Peces/fisiología , Cadena Alimentaria , Animales , Isótopos de Carbono/análisis , China , Ecosistema , Lagos , Isótopos de Nitrógeno/análisis , Plancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA