Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 299(8): 104803, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37172723

RESUMEN

Interleukin-1ß is one of the most potent inducers of beta cell inflammation in the lead-up to type 1 diabetes. We have previously reported that IL1ß-stimulated pancreatic islets from mice with genetic ablation of stress-induced pseudokinase TRB3(TRB3KO) show attenuated activation kinetics for the MAP3K MLK3 and JNK stress kinases. However, JNK signaling constitutes only a portion of the cytokine-induced inflammatory response. Here we report that TRB3KO islets also show a decrease in amplitude and duration of IL1ß-induced phosphorylation of TAK1 and IKK, kinases that drive the potent NF-κB proinflammatory signaling pathway. We observed that TRB3KO islets display decreased cytokine-induced beta cell death, preceded by a decrease in select downstream NF-κB targets, including iNOS/NOS2 (inducible nitric oxide synthase), a mediator of beta cell dysfunction and death. Thus, loss of TRB3 attenuates both pathways required for a cytokine-inducible, proapoptotic response in beta cells. In order to better understand the molecular basis of TRB3-enhanced, post-receptor IL1ß signaling, we interrogated the TRB3 interactome using coimmunoprecipitation followed by mass spectrometry to identify immunomodulatory protein Flightless homolog 1 (Fli1) as a novel, TRB3-interacting protein. We show that TRB3 binds and disrupts Fli1-dependent sequestration of MyD88, thereby increasing availability of this most proximal adaptor required for IL1ß receptor-dependent signaling. Fli1 sequesters MyD88 in a multiprotein complex resulting in a brake on the assembly of downstream signaling complexes. By interacting with Fli1, we propose that TRB3 lifts the brake on IL1ß signaling to augment the proinflammatory response in beta cells.


Asunto(s)
Proteínas de Ciclo Celular , Interleucina-1beta , Transducción de Señal , Animales , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/genética , Inhibidores Enzimáticos/farmacología , Apoptosis/efectos de los fármacos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Activación Transcripcional/genética
2.
Proc Natl Acad Sci U S A ; 112(9): 2699-704, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730876

RESUMEN

Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Gluconeogénesis/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/metabolismo , Factor de Transcripción Activador 3/genética , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ayuno/metabolismo , Gluconeogénesis/genética , Glucosa/genética , Glucosa/metabolismo , Ratones , Ratones Noqueados , NADP/genética , NADP/metabolismo , Elementos de Respuesta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Biol Chem ; 289(43): 29994-30004, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25204656

RESUMEN

Disabling cellular defense mechanisms is essential for induction of apoptosis. We have previously shown that cytokine-mediated activation of the MAP3K MLK3 stabilizes TRB3 protein levels to inhibit AKT and compromise beta cell survival. Here, we show that genetic deletion of TRB3 results in basal activation of AKT, preserves mitochondrial integrity, and confers resistance against cytokine-induced pancreatic beta cell death. Mechanistically, we find that TRB3 stabilizes MLK3, most likely by suppressing AKT-directed phosphorylation, ubiquitination, and proteasomal degradation of MLK3. Accordingly, TRB3(-/-) islets show a decrease in both the amplitude and duration of cytokine-stimulated MLK3 induction and JNK activation. It is well known that JNK signaling is facilitated by a feed forward loop of sequential kinase phosphorylation and is reinforced by a mutual stabilization of the module components. The failure of TRB3(-/-) islets to mount an optimal JNK activation response, coupled with the ability of TRB3 to engage and maintain steady state levels of MLK3, recasts TRB3 as an integral functional component of the JNK module in pancreatic beta cells.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Citocinas/farmacología , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Insulina/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Lisina/metabolismo , Ratones , Mutación/genética , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Poliubiquitina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitinación/efectos de los fármacos , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
4.
Development ; 138(4): 653-65, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21266405

RESUMEN

One major unresolved question in the field of pancreas biology is whether ductal cells have the ability to generate insulin-producing ß-cells. Conclusive examination of this question has been limited by the lack of appropriate tools to efficiently and specifically label ductal cells in vivo. We generated Sox9CreER(T2) mice, which, during adulthood, allow for labeling of an average of 70% of pancreatic ductal cells, including terminal duct/centroacinar cells. Fate-mapping studies of the Sox9(+) domain revealed endocrine and acinar cell neogenesis from Sox9(+) cells throughout embryogenesis. Very small numbers of non-ß endocrine cells continue to arise from Sox9(+) cells in early postnatal life, but no endocrine or acinar cell neogenesis from Sox9(+) cells occurs during adulthood. In the adult pancreas, pancreatic injury by partial duct ligation (PDL) has been suggested to induce ß-cell regeneration from a transient Ngn3(+) endocrine progenitor cell population. Here, we identify ductal cells as a cell of origin for PDL-induced Ngn3(+) cells, but fail to observe ß-cell neogenesis from duct-derived cells. Therefore, although PDL leads to activation of Ngn3 expression in ducts, PDL does not induce appropriate cues to allow for completion of the entire ß-cell neogenesis program. In conclusion, although endocrine cells arise from the Sox9(+) ductal domain throughout embryogenesis and the early postnatal period, Sox9(+) ductal cells of the adult pancreas no longer give rise to endocrine cells under both normal conditions and in response to PDL.


Asunto(s)
Envejecimiento , Diferenciación Celular , Células Madre Multipotentes/metabolismo , Conductos Pancreáticos/embriología , Conductos Pancreáticos/metabolismo , Factor de Transcripción SOX9/metabolismo , Animales , Células Endocrinas/citología , Células Endocrinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Células Madre Multipotentes/citología , Páncreas/embriología , Páncreas/crecimiento & desarrollo , Páncreas/lesiones , Páncreas/metabolismo , Conductos Pancreáticos/citología , Factor de Transcripción SOX9/genética
5.
Stem Cells ; 31(11): 2388-95, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23922239

RESUMEN

Achieving efficient ß-cell regeneration is a major goal of diabetes research. Previously, we found that a combination of ß-cell ablation and pancreatic duct ligation led to ß-cell regeneration by direct conversion from α-cells. Here, we studied the effect of surgical reversal of the duct ligation, finding that there was a wave of ß-cell replication following reversal. The combination of ß-cell neogenesis prior to reversal of the duct ligation and ß-cell replication following reversal resulted in efficient ß-cell regeneration and eventual recovery of function. This provides an important proof of principle that efficient ß-cell regeneration is possible, even from a starting point of profound ß-cell ablation. This has important implications for efforts to promote ß-cell regeneration.


Asunto(s)
Técnicas de Ablación/métodos , Diabetes Mellitus Experimental/cirugía , Diabetes Mellitus/cirugía , Células Secretoras de Insulina/citología , Islotes Pancreáticos/cirugía , Conductos Pancreáticos/cirugía , Animales , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Ligadura , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Nat Med ; 12(3): 310-6, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16491084

RESUMEN

The nature and even existence of adult pancreatic endocrine stem or progenitor cells is a subject of controversy in the field of beta-cell replacement for diabetes. One place to search for such cells is in the nonendocrine fraction of cells that remain after islet isolation, which consist of a mixture of epithelia and mesenchyme. Culture in G418 resulted in elimination of the mesenchymal cells, leaving a highly purified population of nonendocrine pancreatic epithelial cells (NEPECs). To evaluate their differentiation potential, NEPECs were heritably marked and transplanted under the kidney capsule of immunodeficient mice. When cotransplanted with fetal pancreatic cells, NEPECs were capable of endocrine differentiation. We found no evidence of beta-cell replication or cell fusion that could have explained the appearance of insulin positive cells from a source other than NEPECs. Nonendocrine-to-endocrine differentiation of NEPECs supports the existence of endocrine stem or progenitor cells within the epithelial compartment of the adult human pancreas.


Asunto(s)
Diferenciación Celular , Células Epiteliales/citología , Islotes Pancreáticos/citología , Adulto , Animales , Fusión Celular , Trasplante de Células , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Replicación del ADN , Células Epiteliales/metabolismo , Feto/citología , Gentamicinas/farmacología , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Mesodermo/citología , Mesodermo/efectos de los fármacos , Ratones , Ratones SCID , Persona de Mediana Edad
7.
Proc Natl Acad Sci U S A ; 107(18): 8129-34, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20406903

RESUMEN

Using a high-throughput chemical screen, we identified two small molecules that enhance the survival of human embryonic stem cells (hESCs). By characterizing their mechanisms of action, we discovered an essential role of E-cadherin signaling for ESC survival. Specifically, we showed that the primary cause of hESC death following enzymatic dissociation comes from an irreparable disruption of E-cadherin signaling, which then leads to a fatal perturbation of integrin signaling. Furthermore, we found that stability of E-cadherin and the resulting survival of ESCs were controlled by specific growth factor signaling. Finally, we generated mESC-like hESCs by culturing them in mESC conditions. And these converted hESCs rely more on E-cadherin signaling and significantly less on integrin signaling. Our data suggest that differential usage of cell adhesion systems by ESCs to maintain self-renewal may explain their profound differences in terms of morphology, growth factor requirement, and sensitivity to enzymatic cell dissociation.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Animales , Cadherinas/metabolismo , Adhesión Celular , Comunicación Celular , Forma de la Célula , Supervivencia Celular , Células Cultivadas , Células Madre Embrionarias/citología , Matriz Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Ratones , Células Madre Pluripotentes/citología , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
8.
Nat Methods ; 6(11): 805-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19838168

RESUMEN

The slow kinetics and low efficiency of reprogramming methods to generate human induced pluripotent stem cells (iPSCs) impose major limitations on their utility in biomedical applications. Here we describe a chemical approach that dramatically improves (200-fold) the efficiency of iPSC generation from human fibroblasts, within seven days of treatment. This will provide a basis for developing safer, more efficient, nonviral methods for reprogramming human somatic cells.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Benzamidas/farmacología , Dioxoles/farmacología , Difenilamina/análogos & derivados , Difenilamina/farmacología , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Pirimidinas/farmacología , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Tiazoles/farmacología , Transducción Genética
9.
Proc Natl Acad Sci U S A ; 106(18): 7531-6, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19380737

RESUMEN

Intracellular signaling by which pancreatic beta-cells synthesize and secrete insulin in control of glucose homeostasis is not fully understood. Here we show that Shp2, a cytoplasmic tyrosine phosphatase possessing 2 SH2 domains, coordinates signaling events required for insulin biosynthesis in beta-cells. Mice with conditional ablation of the Shp2/Ptpn11 gene in the pancreas exhibited defective glucose-stimulated insulin secretion and impaired glucose tolerance. Consistently, siRNA-mediated Shp2-knockdown in rat insulinoma INS-1 832/13 cells resulted in decreased insulin production and secretion despite an increase in cellular ATP. Shp2 modulates the strength of signals flowing through Akt/FoxO1 and Erk pathways, culminating in control of Pdx1 expression and activity on Ins1 and Ins2 promoters, and forced Pdx1 expression rescued insulin production in Shp2-knockdown beta-cells. Therefore, Shp2 acts as a signal coordinator in beta-cells, orchestrating multiple pathways controlling insulin biosynthesis to maintain glucose homeostasis.


Asunto(s)
Células Secretoras de Insulina/enzimología , Insulina/biosíntesis , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transactivadores/biosíntesis , Transactivadores/genética
10.
J Biol Chem ; 285(29): 22426-36, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20421299

RESUMEN

Mixed lineage kinases (MLKs) have been implicated in cytokine signaling as well as in cell death pathways. Our studies show that MLK3 is activated in leukocyte-infiltrated islets of non-obese diabetic mice and that MLK3 activation compromises mitochondrial integrity and induces apoptosis of beta cells. Using an ex vivo model of islet-splenocyte co-culture, we show that MLK3 mediates its effects via the pseudokinase TRB3, a mammalian homolog of Drosophila Tribbles. TRB3 expression strongly coincided with conformational change and mitochondrial translocation of BAX. Mechanistically, MLK3 directly interacted with and stabilized TRB3, resulting in inhibition of Akt, a strong suppressor of BAX translocation and mitochondrial membrane permeabilization. Accordingly, attenuation of MLK3 or TRB3 expression each prevented cytokine-induced BAX conformational change and attenuated the progression to apoptosis. We conclude that MLKs compromise mitochondrial integrity and suppress cellular survival mechanisms via TRB3-dependent inhibition of Akt.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citocinas/farmacología , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Represoras/metabolismo , Adulto , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Cocultivo , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Unión Proteica/efectos de los fármacos , Conformación Proteica , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/metabolismo , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
11.
Stem Cells ; 28(9): 1630-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20653050

RESUMEN

Because type 1 and type 2 diabetes are characterized by loss of ß-cells, ß-cell regeneration has garnered great interest as an approach to diabetes therapy. Here, we developed a new model of ß-cell regeneration, combining pancreatic duct ligation (PDL) with elimination of pre-existing ß-cells with alloxan. In this model, in which virtually all ß-cells observed are neogenic, large numbers of ß-cells were generated within 2 weeks. Strikingly, the neogenic ß-cells arose primarily from α-cells. α-cell proliferation was prominent following PDL plus alloxan, providing a large pool of precursors, but we found that ß-cells could form from α-cells by direct conversion with or without intervening cell division. Thus, classical asymmetric division was not a required feature of the process of α- to ß-cell conversion. Intermediate cells coexpressing α-cell- and ß-cell-specific markers appeared within the first week following PDL plus alloxan, declining gradually in number by 2 weeks as ß-cells with a mature phenotype, as defined by lack of glucagon and expression of MafA, became predominant. In summary, these data revealed a novel function of α-cells as ß-cell progenitors. The high efficiency and rapidity of this process make it attractive for performing the studies required to gain the mechanistic understanding of the process of α- to ß-cell conversion that will be required for eventual clinical translation as a therapy for diabetes.


Asunto(s)
Proliferación Celular , Transdiferenciación Celular , Diabetes Mellitus Experimental/patología , Células Secretoras de Glucagón/patología , Células Secretoras de Insulina/patología , Regeneración , Factores de Edad , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Lectinas Tipo C/metabolismo , Ligadura , Factor de Transcripción MafB/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Proteínas Oncogénicas/metabolismo , Conductos Pancreáticos/cirugía , Fenotipo , Factores de Tiempo
12.
Stem Cells ; 27(12): 2992-3000, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19839055

RESUMEN

Induced pluripotent stem cell technology has attracted enormous interest for potential application in regenerative medicine. Here, we report that a specific glycogen synthase kinase 3 (GSK-3) inhibitor, CHIR99021, can induce the reprogramming of mouse embryonic fibroblasts transduced by only two factors, Oct4 and Klf4. When combined with Parnate (also named tranylcypromine), an inhibitor of lysine-specific demethylase 1, CHIR99021 can cause the reprogramming of human primary keratinocyte transduced with the two factors, Oct4 and Klf4. To our knowledge, this is the first time that human iPS cells have been generated from somatic cells without exogenous Sox2 expression. Our studies suggest that the GSK-3 inhibitor might have a general application to replace transcription factors in both mouse and human reprogramming.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Reprogramación Celular , Células Madre Pluripotentes/química , Factores de Transcripción SOXB1/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Técnicas de Cocultivo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Factores de Transcripción SOXB1/genética
13.
Diabetes ; 56(3): 703-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17327439

RESUMEN

Limited organ availability is an obstacle to the widespread use of islet transplantation in type 1 diabetic patients. To address this problem, many studies have explored methods for expanding functional human islets in vitro for diabetes cell therapy. We previously showed that islet cells replicate after monolayer formation under the influence of hepatocyte growth factor and selected extracellular matrices. However, under these conditions, senescence and loss of insulin expression occur after >15 doublings. In contrast, other groups have reported that islet cells expanded in monolayers for months progressed through a reversible epithelial-to-mesenchymal transition, and that on removal of serum from the cultures, islet-like structures producing insulin were formed (1). The aim of the current study was to compare the two methods for islet expansion using immunostaining, real-time quantitative PCR, and microarrays at the following time points: on arrival, after monolayer expansion, and after 1 week in serum-free media. At this time, cell aliquots were grafted into nude mice to study in vivo function. The two methods showed similar results in islet cell expansion. Attempts at cell differentiation after expansion by both methods failed to consistently recover a beta-cell phenotype. Redifferentiation of beta-cells after expansion is still a challenge in need of a solution.


Asunto(s)
Diferenciación Celular , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Animales , Péptido C/sangre , Péptido C/metabolismo , Técnicas de Cultivo de Célula , Proliferación Celular , Regulación de la Expresión Génica , Glucagón/genética , Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Ratones , Ratones Desnudos
14.
Islets ; : 1-12, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29723131

RESUMEN

Recently, we showed that pancreatitis in the context of profound ß-cell deficiency was sufficient to induce islet cell transdifferentiation. In some circumstances, this effect was sufficient to result in recovery from severe diabetes. More recently, we showed that the molecular mechanism by which pancreatitis induced ß-cell neogenesis by transdifferentiation was activation of an atypical GPCR called Protease-Activated Receptor 2 (PAR2). However, the ability of PAR2 to induce transdifferentiation occurred only in the setting of profound ß-cell deficiency, implying the existence of a repressive factor from those cells. Here we show that the repressor from ß-cells is insulin. Treatment of primary islets with a PAR2 agonist (2fLI) in combination with inhibitors of insulin secretion and signaling was sufficient to induce insulin and PAX4 gene expression. Moreover, in primary human islets, this treatment also led to the induction of bihormonal islet cells coexpressing glucagon and insulin, a hallmark of islet cell transdifferentiation. Mechanistically, insulin inhibited the positive effect of a PAR2 agonist on insulin gene expression and also led to an increase in PAX4, which plays an important role in islet cell transdifferentiation. The studies presented here demonstrate that insulin represses transdifferentiation of α- to ß-cells induced by activation of PAR2. This provides a mechanistic explanation for the observation that α- to ß-cell transdifferentiation occurs only in the setting of severe ß-cell ablation. The mechanistic understanding of islet cell transdifferentiation and the ability to modulate that process using available pharmacological reagents represents an important step along the path towards harnessing this novel mechanism of ß-cell neogenesis as a therapy for diabetes.

15.
Cell Death Dis ; 7(11): e2452, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27809303

RESUMEN

Understanding the mechanisms by which cells sense and respond to injury is central to developing therapies to enhance tissue regeneration. Previously, we showed that pancreatic injury consisting of acinar cell damage+ß-cell ablation led to islet cell transdifferentiation. Here, we report that the molecular mechanism for this requires activating protease-activated receptor-2 (PAR2), a G-protein-coupled receptor. PAR2 modulation was sufficient to induce islet cell transdifferentiation in the absence of ß-cells. Its expression was modulated in an islet cell type-specific manner in murine and human type 1 diabetes (T1D). In addition to transdifferentiation, PAR2 regulated ß-cell apoptosis in pancreatitis. PAR2's role in regeneration is broad, as mice lacking PAR2 had marked phenotypes in response to injury in the liver and in digit regeneration following amputation. These studies provide a pharmacologically relevant target to induce tissue regeneration in a number of diseases, including T1D.


Asunto(s)
Transdiferenciación Celular , Receptor PAR-2/metabolismo , Regeneración , Animales , Tetracloruro de Carbono , Muerte Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Transdiferenciación Celular/genética , Ceruletida/farmacología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Extremidades , Regulación de la Expresión Génica/efectos de los fármacos , Glucagón/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción Paired Box/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Regeneración/efectos de los fármacos , Factores de Transcripción/metabolismo
16.
Diabetes ; 51(12): 3435-9, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12453897

RESUMEN

Human islet expansion in monolayer culture leads to loss of function and senescence. By maintaining the 3-D configuration of islets in fibrin gels, it is feasible to expand beta-cells in response to hepatocyte growth factor (HGF) while preserving physiologic glucose responsiveness both in vitro and in vivo after transplantation into nude mice. Islets were cultured free floating with or without growth factors and nicotinamide and in fibrin gels with the same conditions. Proliferation was observed only in islets cultured in fibrin gels and the cocktail; total insulin increased by threefold, with a concomitant increase in beta-cell mass by morphometry. Insulin release after glucose challenge was also preserved. Islets in fibrin gels gave rise in vivo to large grafts rich in insulin and glucagon, and grafts from free-floating islets were smaller with fewer endocrine cells. Circulating human C-peptide levels were higher than in the mice receiving free-floating islets. In summary, fibrin allows for HGF-mediated cell proliferation while preserving glucose responsiveness in an environment that preserves cell-cell contacts. Limited islet ex vivo expansion under these conditions may improve recipient-donor tissue ratios to equal the functional results of whole-organ transplants.


Asunto(s)
Factor de Crecimiento de Hepatocito/farmacología , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiología , Animales , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estudios de Factibilidad , Fibrina/farmacología , Geles , Humanos , Insulina/metabolismo , Ratones , Ratones Desnudos , Trasplante Heterólogo
17.
Cell Rep ; 10(7): 1149-57, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25704817

RESUMEN

Although persistent elevations in circulating glucose concentrations promote compensatory increases in pancreatic islet mass, unremitting insulin resistance causes deterioration in beta cell function that leads to the progression to diabetes. Here, we show that mice with a knockout of the CREB coactivator CRTC2 in beta cells have impaired oral glucose tolerance due to decreases in circulating insulin concentrations. CRTC2 was found to promote beta cell function in part by stimulating the expression of the transcription factor MafA. Chronic hyperglycemia disrupted cAMP signaling in pancreatic islets by activating the hypoxia inducible factor (HIF1)-dependent induction of the protein kinase A inhibitor beta (PKIB), a potent inhibitor of PKA catalytic activity. Indeed, disruption of the PKIB gene improved islet function in the setting of obesity. These results demonstrate how crosstalk between nutrient and hormonal pathways contributes to loss of pancreatic islet function.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Resistencia a la Insulina , Animales , Línea Celular Tumoral , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Prueba de Tolerancia a la Glucosa , Factor 1 Inducible por Hipoxia/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Islotes Pancreáticos/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Ann N Y Acad Sci ; 1005: 138-47, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14679048

RESUMEN

Achieving normoglycemia is the goal of diabetes therapy. Potentially, there are many ways to achieve this goal, including transplantation of cells exhibiting glucose-responsive insulin secretion. However, to be applicable to the large number of people who might benefit from beta cell replacement, an unlimited supply of beta cells must be found. To address this problem, we have been developing cell lines from the human endocrine pancreas. In one case, a cell line, betalox5, has been developed from human islets that can be induced under some circumstances to differentiate into functional beta cells exhibiting appropriate glucose-responsive insulin secretion. Inducing differentiation is complex, requiring the activation of multiple signaling pathways, including those downstream of those involved in cell-cell contact and the glucagon-like peptide-1 receptor. In addition, transfer of the PDX-1 gene is also necessary to render the cells competent for differentiation. However, it is clear that many other genes are involved in maintaining the commitment of betalox5 cells towards the beta cell lineage. Understanding the complement of genes required to establish and maintain a beta cell lineage commitment would be enormously helpful in efforts to develop a cell line that can be used for beta cell replacement therapies. Here, we provide further information on the characteristics of cell lines that we have developed from the human pancreas that are relevant to the development of a beta cell replacement therapy for diabetes.


Asunto(s)
Diabetes Mellitus/terapia , Trasplante de Islotes Pancreáticos , Secuencia de Bases , Línea Celular , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre
19.
Stem Cell Res ; 12(3): 807-14, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24788136

RESUMEN

There are several challenges to successful implementation of a cell therapy for insulin dependent diabetes derived from human embryonic stem cells (hESC). Among these are development of functional insulin producing cells, a clinical delivery method that eliminates the need for chronic immunosuppression, and assurance that hESC derived tumors do not form in the patient. We and others have shown that encapsulation of cells in a bilaminar device (TheraCyte) provides immunoprotection in rodents and primates. Here we monitored human insulin secretion and employed bioluminescent imaging (BLI) to evaluate the maturation, growth, and containment of encapsulated islet progenitors derived from CyT49 hESC, transplanted into mice. Human insulin was detectable by 7 weeks post-transplant and increased 17-fold over the course of 8 weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Further, bioluminescent imaging revealed for the first time that hESCs remained fully contained in encapsulation devices for up to 150 days, the longest period tested. Collectively, the data suggest that encapsulated hESC derived islet progenitors hold great promise as an effective and safe cell replacement therapy for insulin dependent diabetes.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Diabetes Mellitus/terapia , Células Madre Embrionarias/citología , Islotes Pancreáticos/crecimiento & desarrollo , Animales , Técnicas de Cultivo de Célula/instrumentación , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Células Madre Embrionarias/química , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/trasplante , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/química , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos , Ratones , Coloración y Etiquetado
20.
Physiol Rep ; 2(9)2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25194022

RESUMEN

The maternal embryonic leucine zipper kinase (MELK) is expressed in stem/progenitor cells in some adult tissues, where it has been implicated in diverse biological processes, including the control of cell proliferation. Here, we described studies on its role in adult pancreatic regeneration in response to injury induced by duct ligation and ß-cell ablation. MELK expression was studied using transgenic mice expressing GFP under the control of the MELK promoter, and the role of MELK was studied using transgenic mice deleted in the MELK kinase domain. Pancreatic damage was initiated using duct ligation and chemical beta-cell ablation. By tracing MELK expression using a MELK promoter-GFP transgene, we determined that expression was extremely low in the normal pancreas. However, following duct ligation and ß-cell ablation, it became highly expressed in pancreatic ductal cells while remaining weakly expressed in α-cells and ß- cells. In a mutant mouse in which the MELK kinase domain was deleted, there was no effect on pancreatic development. There was no apparent effect on islet regeneration, either. However, following duct ligation there was a dramatic increase in the number of small ducts, but no change in the total number of duct cells or duct cell proliferation. In vitro studies indicated that this was likely due to a defect in cell migration. These results implicate MELK in the control of the response of the pancreas to injury, specifically controlling cell migration in normal and transformed pancreatic duct cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA