Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Am Chem Soc ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026697

RESUMEN

Entropy-engineered materials are garnering considerable attention owing to their excellent mechanical and transport properties, such as their high thermoelectric performance. However, understanding the effect of entropy on thermoelectrics remains a challenge. In this study, we used the PbGeSnCdxTe3+x family as a model system to systematically investigate the impact of entropy engineering on its crystal structure, microstructure evolution, and transport behavior. We observed that PbGeSnTe3 crystallizes in a rhombohedral structure at room temperature with complex domain structures and transforms into a high-temperature cubic structure at ∼373 K. By alloying CdTe with PbGeSnTe3, the increased configurational entropy lowers the phase-transition temperature and stabilizes PbGeSnCdxTe3+x in the cubic structure at room temperature, and the domain structures vanish accordingly. The high-entropy effect results in increased atomic disorder and consequently a low lattice thermal conductivity of 0.76 W m-1 K-1 in the material owing to enhanced phonon scattering. Notably, the increased crystal symmetry is conducive to band convergence, which results in a high-power factor of 22.4 µW cm-1 K-1. As a collective consequence of these factors, a maximum ZT of 1.63 at 875 K and an average ZT of 1.02 in the temperature range of 300-875 K were obtained for PbGeSnCd0.08Te3.08. This study highlights that the high-entropy effect can induce a complex microstructure and band structure evolution in materials, which offers a new route for the search for high-performance thermoelectrics in entropy-engineered materials.

2.
Inorg Chem ; 62(43): 17940-17945, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37844091

RESUMEN

The efficient broad-band emission from low-dimensional metal halides has garnered significant interest. However, most of these materials exhibit poor stability at the operating temperature of light-emitting diodes. In this study, using the solution method (temperature lower than 90 °C), a new compound (NH4)3In0.95Sb0.05Cl6 was obtained with the structure in the Pnma space group featuring unit-cell parameters of a = 12.3871(4) Å, b = 24.9895(9) Å, and c = 7.7844(3) Å. (NH4)3In0.95Sb0.05Cl6 can be prepared by doping (NH4)2InCl5·H2O when the Sb3+ feeding ratio is in the range of 30-80%. Thermal analysis reveals that (NH4)3In0.95Sb0.05Cl6 is stable up to 320 °C. (NH4)3In0.95Sb0.05Cl6 exhibits broad-band yellow-white emission with extremely high internal and external photoluminescence quantum yields of 93 and 77%, respectively. Interestingly, (NH4)3In0.95Sb0.05Cl6 displays remarkable resistance to thermal quenching, retaining 83% of its initial photoluminescence intensity at 80 °C. A white light-emitting diode is fabricated by combining (NH4)3In0.95Sb0.05Cl6 with a commercial phosphor, and a high color rendering of 92.8 was obtained. This work presents an environmentally friendly, efficient, stable UV-excited broad-band emission material for potential solid-state lighting applications.

3.
Nano Lett ; 22(12): 4848-4853, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35675212

RESUMEN

Heterostructures of optical cavities and quantum emitters have been highlighted for enhanced light-matter interactions. A silicon nanosphere, core, and MoS2, shell, structure is one such heterostructure referred to as the core@shell architecture. However, the complexity of the synthesis and inherent difficulties to locally probe this architecture have resulted in a lack of information about its localized features limiting its advances. Here, we utilize valence electron energy loss spectroscopy (VEELS) to extract spatially resolved dielectric functions of Si@MoS2 with nanoscale spatial resolution corroborated with simulations. A hybrid electronic critical point is identified ∼3.8 eV for Si@MoS2. The dielectric functions at the Si/MoS2 interface is further probed with a cross-sectioned core-shell to assess the contribution of each component. Various optical parameters can be defined via the dielectric function. Hence, the methodology and evolution of the dielectric function herein reported provide a platform for exploring other complex photonic nanostructures.


Asunto(s)
Molibdeno , Nanoestructuras , Electrónica , Nanoestructuras/química , Silicio/química
4.
J Am Chem Soc ; 144(3): 1445-1454, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35029977

RESUMEN

Bi2Si2Te6, a 2D compound, is a direct band gap semiconductor with an optical band gap of ∼0.25 eV, and is a promising thermoelectric material. Single-phase Bi2Si2Te6 is prepared by a scalable ball-milling and annealing process, and the highly densified polycrystalline samples are prepared by spark plasma sintering. Bi2Si2Te6 shows a p-type semiconductor transport behavior and exhibits an intrinsically low lattice thermal conductivity of ∼0.48 W m-1 K-1 (cross-plane) at 573 K. The first-principles density functional theory calculations indicate that such low lattice thermal conductivity is derived from the interactions between acoustic phonons and low-lying optical phonons, local vibrations of Bi, the low Debye temperature, and strong anharmonicity result from the unique 2D crystal structure and metavalent bonding of Bi2Si2Te6. The Bi2Si2Te6 exhibits an optimal figure of merit ZT of ∼0.51 at 623 K, which can be further enhanced by the substitution of Bi with Pb. Pb doping leads to a large increase in power factor S2σ, from ∼3.9 µW cm-1 K-2 of Bi2Si2Te6 to ∼8.0 µW cm-1 K-2 of Bi1.98Pb0.02Si2Te6 at 773 K, owing to the increase in carrier concentration. Moreover, Pb doping induces a further reduction in the lattice thermal conductivity to ∼0.38 W m-1 K-1 (cross-plane) at 623 K in Bi1.98Pb0.02Si2Te6, due to strengthened point defect (PbBi') scattering. The simultaneous optimization of the power factor and lattice thermal conductivity achieves a peak ZT of ∼0.90 at 723 K and a high average ZT of ∼0.66 at 400-773 K in Bi1.98Pb0.02Si2Te6.

5.
J Am Chem Soc ; 144(20): 9113-9125, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35537206

RESUMEN

The understanding of thermoelectric properties of ternary I-III-VI2 type (I = Cu, Ag; III = Ga, In; and VI = Te) chalcopyrites is less well developed. Although their thermal transport properties are relatively well studied, the relationship between the electronic band structure and charge transport properties of chalcopyrites has been rarely discussed. In this study, we reveal the unusual electronic band structure and the dynamic doping effect that could underpin the promising thermoelectric properties of Cu1-xAgxGaTe2 compounds. Density functional theory (DFT) calculations and electronic transport measurements suggest that the Cu1-xAgxGaTe2 compounds possess an unusual non-parabolic band structure, which is important for obtaining a high Seebeck coefficient. Moreover, a mid-gap impurity level was also observed in Cu1-xAgxGaTe2, which leads to a strong temperature-dependent carrier concentration and is able to regulate the carrier density at the optimized value for a wide temperature region and thus is beneficial to obtaining the high power factor and high average ZT of Cu1-xAgxGaTe2 compounds. We also demonstrate a great improvement in the thermoelectric performance of Cu1-xAgxGaTe2 by introducing Cu vacancies and ZnTe alloying. The Cu vacancies are effective in increasing the hole density and the electrical conductivity, while ZnTe alloying reduces the thermal conductivity. As a result, a maximum ZT of 1.43 at 850 K and a record-high average ZT of 0.81 for the Cu0.68Ag0.3GaTe2-0.5%ZnTe compound are achieved.

6.
J Am Chem Soc ; 144(16): 7402-7413, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420804

RESUMEN

Converting waste heat into useful electricity using solid-state thermoelectrics has a potential for enormous global energy savings. Lead chalcogenides are among the most prominent thermoelectric materials, whose performance decreases with an increase in chalcogen amounts (e.g., PbTe > PbSe > PbS). Herein, we demonstrate the simultaneous optimization of the electrical and thermal transport properties of PbS-based compounds by alloying with GeS. The addition of GeS triggers a complex cascade of beneficial events as follows: Ge2+ substitution in Pb2+ and discordant off-center behavior; formation of Pb5Ge5S12 as stable second-phase inclusions through valence disproportionation of Ge2+ to Ge0 and Ge4+. PbS and Pb5Ge5S12 exhibit good conduction band energy alignment that preserves the high electron mobility; the formation of Pb5Ge5S12 increases the electron carrier concentration by introducing S vacancies. Sb doping as the electron donor produces a large power factor and low lattice thermal conductivity (κlat) of ∼0.61 W m-1 K-1. The highest performance was obtained for the 14% GeS-alloyed samples, which exhibited an increased room-temperature electron mobility of ∼121 cm2 V-1 s-1 for 3 × 1019 cm-3 carrier density and a ZT of 1.32 at 923 K. This is ∼55% greater than the corresponding Sb-doped PbS sample and is one of the highest reported for the n-type PbS system. Moreover, the average ZT (ZTavg) of ∼0.76 from 400 to 923 K is the highest for PbS-based systems.

7.
Inorg Chem ; 61(34): 13525-13531, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960253

RESUMEN

RbInSn2S6 and CsInSn2S6 are yellow two-dimensional (2D) semiconductors featuring anionic SnS2-type layers of edge-sharing (In/Sn)S6 octahedra. These structures are directly derived from the parent structure of SnS2 by replacement of Sn4+ atoms with A+ and In3+ atoms. The compounds crystallize, isotypic to the ion-exchange material KInSn2S6. They adopt the triclinic space group R3̅m (no. 166). The compounds have similar indirect optical band gaps of 2.31(5) eV for Rb and 2.47(5) eV Cs. The measured work functions for each material are ∼5.38 eV. The density functional theory-calculated effective mass values exhibit strong anisotropy due to the 2D nature of the crystal structures and in the case of CsInSn2S6 for hole carriers along the a, b, and c crystallographic directions are 0.30 m0, 0.34 m0, and 2.54 m0, respectively, while for electrons are 0.06 m0, 0.07 m0, and 0.47 m0, respectively.

8.
Inorg Chem ; 61(30): 11973-11980, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35855614

RESUMEN

The participation of organic cations plays an important role in tuning broad-spectra emissions. Herein, we synthesized a series of Mn(II)-based two-dimensional (2D) halide perovskites with arylamine cations of different lengths having the general formula (C6H5(CH2)xNH3)2MnCl4 (x = 1-4), with the x = 4 compound reported here for the first time. With the increase in the -(CH2)- in organic cations, the distance between adjacent inorganic layers increases, causing the title compounds to exhibit different structural distortions. As the Mn-Cl-Mn angular distortion increases, the experimental optical band gaps of the title compounds increase correspondingly. When the angle distortion between the octahedrons of the compounds is similar, the band gaps may also be affected by the distortion of the octahedron itself (the bond-length distortion of 2 is greater than that of 4). Under UV-light irradiation at 298 K, all of the compounds exhibit two emission peaks centered at 480-505 and 610 nm, corresponding to the organic-cation emission and the 4T1(G) to 6A1(S) radiative transition of Mn2+ ions, respectively. Among these title compounds, (PPA)2MnCl4 [(PPA)+ = C6H5(CH2)3NH3+] exhibits the strongest photoluminescence (PL). The study of the title compounds contributes to an in-depth understanding of the relationship between the structural distortion and optical properties of 2D Mn(II)-based perovskite materials.

9.
J Am Chem Soc ; 143(15): 5978-5989, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33847500

RESUMEN

Owing to the diversity of composition and excellent transport properties, the ternary I-III-VI2 type diamond-like chalcopyrite compounds are attractive functional semiconductors, including as thermoelectric materials. In this family, CuInTe2 and CuGaTe2 are well investigated and achieve maximum ZT values of ∼1.4 at 950 K and an average ZT of 0.43. However, both compounds have poor electrical conductivity at low temperature, resulting in low ZT below 450 K. In this work, we have greatly improved the thermoelectric performance in the quinary diamondoid compound (Cu0.8Ag0.2)(In0.2Ga0.8)Te2 by understanding and controlling the effects of different constituent elements on the thermoelectric transport properties. Our combined theoretical and experimental effort indicates that Ga in the In site of the lattice decreases the carrier effective mass and improves the electrical conductivity and power factor of Cu0.8Ag0.2In1-xGaxTe2. Furthermore, Ag in the Cu site strongly suppresses the heat transport via the enhanced acoustic phonon-optical phonon coupling effects, leading to the ultralow thermal conductivity of ∼0.49 W m-1 K-1 at 850 K in Cu0.8Ag0.2In0.2Ga0.8Te2. Defect formation energy calculations suggest intrinsic Cu vacancies introduce defect levels that are important to the temperature-dependent hole density and electrical conductivity. Therefore, we introduced extra Cu vacancies to optimize the hole carrier density and improve the power factor of Cu0.8Ag0.2In0.2Ga0.8Te2. As a result, a maximum ZT of ∼1.5 at 850 K and an average ZT of 0.78 in the temperature range of 400-850 K are obtained, which is among the highest in the diamond-like compound family.

10.
J Am Chem Soc ; 143(43): 18204-18215, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34664968

RESUMEN

The mixed cation compounds Na1-xKxAsSe2 (x = 0.8, 0.65, 0.5) and Na0.1K0.9AsS2 crystallize in the polar noncentrosymmetric space group Cc. The AAsQ2 (A = alkali metals, Q = S, Se) family features one-dimensional (1D) 1/∞[AQ2-] chains comprising corner-sharing pyramidal AQ3 units in which the packing of these chains is dependent on the alkali metals. The parallel 1/∞[AQ2-] chains interact via short As···Se contacts, which increase in length when the fraction of K atoms is increased. The increase in the As···Se interchain distance increases the band gap from 1.75 eV in γ-NaAsSe2 to 2.01 eV in Na0.35K0.65AsSe2, 2.07 eV in Na0.2K0.8AsSe2, and 2.18 eV in Na0.1K0.9AsS2. The Na1-xKxAsSe2 (x = 0.8, 0.65) compounds melt congruently at approximately 316 °C. Wavelength-dependent second harmonic generation (SHG) measurements on powder samples of Na1-xKxAsSe2 (x = 0.8, 0.65, 0.5) and Na0.1K0.9AsS2 suggest that Na0.2K0.8AsSe2 and Na0.1K0.9AsS2 have the highest SHG response and exhibit significantly higher laser-induced damage thresholds (LIDTs). Theoretical SHG calculations on Na0.5K0.5AsSe2 confirm its SHG response with the highest value of d33 = 22.5 pm/V (χ333(2) = 45.0 pm/V). The effective nonlinearity for a randomly oriented powder is calculated to be deff = 18.9 pm/V (χeff(2) = 37.8 pm/V), which is consistent with the experimentally obtained value of deff = 16.5 pm/V (χeff(2) = 33.0 pm/V). Three-photon absorption is the dominant mechanism for the optical breakdown of the compounds under intense excitation at 1580 nm, with Na0.2K0.8AsSe2 exhibiting the highest stability.

11.
Inorg Chem ; 60(1): 325-333, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33305940

RESUMEN

Transition-metal-based chalcogenides are a series of intriguing semiconductors with applications spanning various fields because of their rich structure and numerous functionalities. This paper reports the crystal structure and basic physical properties of a new quaternary chalcogenide In4Pb5.5Sb5S19. The crystal structure of In4Pb5.5Sb5S19 was determined by both powder and single-crystal X-ray diffraction techniques. In4Pb5.5Sb5S19 crystallizes in the monoclinic system with I2/m space group, and the structure parameters are a = 26.483 Å, b = 3.899 Å, c = 32.696 Å, and ß = 111.86°. The polyhedral double chains of Sb3+ and Sb/Pb2+ as the main cations are parallel to each other and form a Jamesonite-like mineral structure through the short chain links of the distorted In, Pb, and Sb polyhedron. In4Pb5.5Sb5S19 exhibits a moderate experimental band gap of 1.42 eV, indicating its potential for application in solar cells and photocatalysis. In addition, In4Pb5.5Sb5S19 exhibits good ambient stability, and differential scanning calorimetry tests demonstrate that it is stable up to 892 K in a nitrogen atmosphere. Moreover, In4Pb5.5Sb5S19 exhibits extremely low thermal conductivity (0.438-0.478 W m-1 K-1 ranging from 300 to 700 K) compared with binary counterparts such as PbS and In2S3. Future chemical manipulation via elemental doping or defect engineering may make the title compound a potential thermoelectric or thermal insulating material.

12.
Angew Chem Int Ed Engl ; 60(1): 268-273, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32926532

RESUMEN

We present an effective approach to favorably modify the electronic structure of PbSe using Ag doping coupled with SrSe or BaSe alloying. The Ag 4d states make a contribution to in the top of the heavy hole valence band and raise its energy. The Sr and Ba atoms diminish the contribution of Pb 6s2 states and decrease the energy of the light hole valence band. This electronic structure modification increases the density-of-states effective mass, and strongly enhances the thermoelectric performance. Moreover, the Ag-rich nanoscale precipitates, discordant Ag atoms, and Pb/Sr, Pb/Ba point defects in the PbSe matrix work together to reduce the lattice thermal conductivity, resulting a record high average ZTavg of around 0.86 over 400-923 K.

13.
J Am Chem Soc ; 142(20): 9553-9563, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32320237

RESUMEN

Halide perovskites are anticipated to impact next generation high performance solar cells because of their extraordinary charge transport and optoelectronic properties. However, their thermal transport behavior has received limited attention. In this work, we studied the thermal transport and thermoelectric properties of the CsSnBr3-xIx perovskites. We find a strong correlation between lattice dynamics and an ultralow thermal conductivity for series CsSnBr3-xIx reaching 0.32 Wm-1K-1 at 550 K. The CsSnBr3-xIx also possess a decent Seebeck coefficient and controllable electrical transport properties. The crystallography data and theoretical calculations suggest the Cs atom deviates from its ideal cuboctahedral geometry imposed by the perovskite cage and behaves as a heavy atom rattling oscillator. This off-center tendency of Cs, together with the distortion of SnX6 (X = Br or I) octahedra, produces a highly dynamic and disordered structure in CsSnBr3-xIx, which gives rise to a very low Debye temperature and phonon velocity. Moreover, the low temperature heat capacity data suggests strong coupling between the low frequency optical phonons and heat carrying acoustical phonons. This induces strong phonon resonance scattering that induces the ultralow lattice thermal conductivity of CsSnBr3-xIx.

14.
J Am Chem Soc ; 142(41): 17730-17742, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32933252

RESUMEN

Eighteen new quaternary chalcogenides AGaM'Q4 (A+ = K+, Rb+, Cs+, Tl+; M'4+ = Ge4+, Sn4+; Q2- = S2-, Se2-) have been prepared by solid-state syntheses and structurally characterized using single-crystal X-ray diffraction techniques. These new phases crystallize in a variety of layered structure types. The tin analogues also adopt an extended three-dimensional network structure as polymorphs. The polymorphism and phase-stability in these cases were studied by thermal analysis and high-temperature in situ X-ray powder diffraction. All compounds are semiconductors with the colored selenides absorbing light in the infrared-green region (1.8 eV < Eg < 2.3 eV) and the mostly white sulfides absorbing light in the blue-ultraviolet range (2.5 eV < Eg < 3.6 eV). Based on third-harmonic generation (THG) measurements, the third-order nonlinear optical (NLO) susceptibilities χ(3) of the new and previously reported AGaM'Q4 compounds were determined. These measurements revealed an apparent correlation between the THG response of the sample and its band gap, rather than the crystal structure type. While low-gap materials possess higher nonlinearity in general, we found that layered orthorhombic RbGaGeS4 exhibits an impressive χ(3) value (about four times larger than that of AgGaS2) even with a large band gap and shows stability under ambient conditions with no significant irradiation damage.

15.
J Am Chem Soc ; 142(35): 15187-15198, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786784

RESUMEN

We investigate the structural and physical properties of the AgSnmSbSem+2 system with m = 1-20 (i.e., SnSe matrix and ∼5-50% AgSbSe2) from atomic, nano, and macro length scales. We find the 50:50 composition, with m = 1 (i.e., AgSnSbSe3), forms a stable cation-disordered cubic rock-salt p-type semiconductor with a special multi-peak electronic valence band structure. AgSnSbSe3 has an intrinsically low lattice thermal conductivity of ∼0.47 W m-1 K-1 at 673 K owing to the synergy of cation disorder, phonon anharmonicity, low phonon velocity, and low-frequency optical modes. Furthermore, Te alloying on Se sites creates a quinary high-entropy NaCl-type solid solution AgSnSbSe3-xTex with randomly disordered cations and anions. The extra point defects and lattice dislocations lead to glass-like lattice thermal conductivities of ∼0.32 W m-1 K-1 at 723 K and higher hole carrier concentration than AgSnSbSe3. Concurrently, the Te alloying promotes greater convergence of the multiple valence band maxima in AgSnSbSe1.5Te1.5, the composition with the highest configurational entropy. Facilitated by these favorable modifications, we achieve a high average power factor of ∼9.54 µW cm-1 K-2 (400-773 K), a peak thermoelectric figure of merit ZT of 1.14 at 723 K, and a high average ZT of ∼1.0 over a wide temperature range of 400-773 K in AgSnSbSe1.5Te1.5.

16.
J Am Chem Soc ; 141(47): 18900-18909, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31680516

RESUMEN

Doping in a lattice refers to the introduction of very small quantities of foreign atoms and has a generally small effect on decreasing the lattice thermal conductivity, unlike alloying which involves large fractions of other elements and strongly enhances point defect phonon scattering. Here, we report that, by alloying only 3% of In on the Cu sites of the diamond-like lattice of CuFeS2 chalcopyrite compound (Cu1-xInxFeS2, x = 0.03) has a disproportionally large effect in reducing the lattice thermal conductivity of the compound from 2.32 to 1.36 Wm-1K-1 at 630 K. We find that In is not fully ionized to +3 when on the Cu sublattice and exists mainly in the +1 oxidation state. The 5s2 lone pair of electrons of In+ makes this atom incompatible (referred to as discordant) with the tetrahedral geometry of the crystallographic site. This causes strong local bond distortions thereby softening the In-S and Cu-S chemical bonds and introducing localized low frequency vibrations. The latter couple with the base phonon frequencies of the CuFeS2 matrix enhancing the anharmonicity and decreasing the phonon velocity, and consequently the lattice thermal conductivity. The control material in which the In doping is on the Fe3+ site of the structure at the same doping level (and found in the site-compatible In3+ state), has a far smaller effect on the phonon scattering.

17.
J Am Chem Soc ; 141(15): 6403-6412, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30916942

RESUMEN

We report that Ga-doped and Ga-In-codoped n-type PbS samples show excellent thermoelectric performance in the intermediate temperature range. First-principles electronic structure calculations reveal that Ga doping can cause Fermi level pinning in PbS by introducing a gap state between the conduction and valence bands. Furthermore, Ga-In codoping introduces an extra conduction band. These added electronic features lead to high electron mobilities up to µH ∼ 630 cm2 V-1 s-1 for n of 1.67 × 1019 cm-3 and significantly enhanced Seebeck coefficients in PbS. Consequently, we obtained a maximum power factor of ∼32 µW cm-1 K-2 at 300 K for Pb0.9875Ga0.0125S, which is the highest reported for PbS-based systems giving a room-temperature figure of merit, ZT, of ∼0.35 and ∼0.82 at 923 K. For the codoped Pb0.9865Ga0.0125In0.001S, the maximum ZT rises to ∼1.0 at 923 K and achieves a record-high average ZT (ZTavg) of ∼0.74 in the temperature range of 400-923 K.

18.
J Am Chem Soc ; 141(10): 4480-4486, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30779557

RESUMEN

We show an example of hierarchically designing electronic bands of PbSe toward excellent thermoelectric performance. We find that alloying 15 mol % PbTe into PbSe causes a negligible change in the light and heavy valence band energy offsets (Δ EV) of PbSe around room temperature; however, with rising temperature it makes Δ EV decrease at a significantly higher rate than in PbSe. In other words, the temperature-induced valence band convergence of PbSe is accelerated by alloying with PbTe. On this basis, applying 3 mol % Cd substitution on the Pb sites of PbSe0.85Te0.15 decreases Δ EV and enhances the Seebeck coefficient at all temperatures. Excess Cd precipitates out as CdSe1- yTe y, whose valence band aligns with that of the p-type Na-doped PbSe0.85Te0.15 matrix. This enables facile charge transport across the matrix/precipitate interfaces and retains the high carrier mobilities. Meanwhile, compared to PbSe the lattice thermal conductivity of PbSe0.85Te0.15 is significantly decreased to its amorphous limit of 0.5 W m-1 K-1. Consequently, a highest peak ZT of 1.7 at 900 K and a record high average ZT of ∼1 (400-900 K) for a PbSe-based system are achieved in the composition Pb0.95Na0.02Cd0.03Se0.85Te0.15, which are ∼70% and ∼50% higher than those of Pb0.98Na0.02Se control sample, respectively.

19.
J Am Chem Soc ; 141(27): 10905-10914, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31203611

RESUMEN

Understanding the nature of phonon transport in solids and the underlying mechanism linking lattice dynamics and thermal conductivity is important in many fields, including the development of efficient thermoelectric materials where a low lattice thermal conductivity is required. Herein, we choose the pair of synthetic chalcopyrite CuFeS2 and talnakhite Cu17.6Fe17.6S32 compounds, which possess the same elements and very similar crystal structures but very different phonon transport, as contrasting examples to study the influence of lattice dynamics and chemical bonding on the thermal transport properties. Chemically, talnakhite derives from chalcopyrite by inserting extra Cu and Fe atoms in the chalcopyrite lattice. The CuFeS2 compound has a lattice thermal conductivity of 2.37 W m-1 K-1 at 625 K, while Cu17.6Fe17.6S32 features Cu/Fe disorder and possesses an extremely low lattice thermal conductivity of merely 0.6 W m-1 K-1 at 625 K, approaching the amorphous limit κmin. Low-temperature heat capacity measurements and phonon calculations point to a large anharmonicity and low Debye temperature in Cu17.6Fe17.6S32, originating from weaker chemical bonds. Moreover, Mössbauer spectroscopy suggests that the state of Fe atoms in Cu17.6Fe17.6S32 is partially disordered, which induces the enhanced alloy scattering. All of the above peculiar features, absent in CuFeS2, contribute to the extremely low lattice thermal conductivity of the Cu17.6Fe17.6S32 compound.

20.
J Am Chem Soc ; 141(40): 16169-16177, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31508945

RESUMEN

PbTe-based thermoelectric materials are some of the most promising for converting heat into electricity, but their n-type versions still lag in performance the p-type ones. Here, we introduce midgap states and nanoscale precipitates using Ga-doping and GeTe-alloying to considerably improve the performance of n-type PbTe. The GeTe alloying significantly enlarges the energy band gap of PbTe and subsequent Ga doping introduces special midgap states that lead to an increased density of states (DOS) effective mass and enhanced Seebeck coefficients. Moreover, the nucleated Ga2Te3 nanoscale precipitates and off-center discordant Ge atoms in the PbTe matrix cause intense phonon scattering, strongly reducing the thermal conductivity (∼0.65 W m-1 K-1 at 623 K). As a result, a high room-temperature thermoelectric figure of merit ZT ∼ 0.59 and a peak ZTmax of ∼1.47 at 673 K were obtained for the Pb0.98Ga0.02Te-5%GeTe. The ZTavg value that is most relevant for devices is ∼1.27 from 400 to 773 K, the highest recorded value for n-type PbTe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA