Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(15): e18544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39098996

RESUMEN

Peripheral nerve defect are common clinical problem caused by trauma or other diseases, often leading to the loss of sensory and motor function in patients. Autologous nerve transplantation has been the gold standard for repairing peripheral nerve defects, but its clinical application is limited due to insufficient donor tissue. In recent years, the application of tissue engineering methods to synthesize nerve conduits for treating peripheral nerve defect has become a current research focus. This study introduces a novel approach for treating peripheral nerve defects using a tissue-engineered PLCL/SF/NGF@TA-PPy-RGD conduit. The conduit was fabricated by combining electrospun PLCL/SF with an NGF-loaded conductive TA-PPy-RGD gel. The gel, synthesized from RGD-modified tannic acid (TA) and polypyrrole (PPy), provides growth anchor points for nerve cells. In vitro results showed that this hybrid conduit could enhance PC12 cell proliferation, migration, and reduce apoptosis under oxidative stress. Furthermore, the conduit activated the PI3K/AKT signalling pathway in PC12 cells. In a rat model of sciatic nerve defect, the PLCL/SF/NGF@TA-PPy-RGD conduit significantly improved motor function, gastrocnemius muscle function, and myelin sheath axon thickness, comparable to autologous nerve transplantation. It also promoted angiogenesis around the nerve defect. This study suggests that PLCL/SF/NGF@TA-PPy-RGD conduits provide a conducive environment for nerve regeneration, offering a new strategy for peripheral nerve defect treatment, this study provided theoretical basis and new strategies for the research and treatment of peripheral nerve defect.


Asunto(s)
Hidrogeles , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Oligopéptidos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Nervio Ciático , Transducción de Señal , Animales , Regeneración Nerviosa/efectos de los fármacos , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Células PC12 , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Oligopéptidos/farmacología , Oligopéptidos/química , Hidrogeles/química , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Ratas Sprague-Dawley , Masculino , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Polímeros/química
2.
J Org Chem ; 89(6): 3894-3906, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38385785

RESUMEN

Monodentate chelation-assisted direct ortho-C-H sulfonylation of (hetero)arenes using TosMIC as the novel sulfonylating reagent has been developed. A broad range of substrates, including indolines, indoles, 2-phenylpyridines, and others were well tolerated to afford the corresponding products in moderate to good yields. Mechanistic studies revealed that the sulfonyl radical might be involved. Inspired by the above discovery, preliminary para-C-H sulfonylation of naphthalene substrate was also successfully realized. The current protocol featured with cheap metal catalysis, good functional group compatibility, and operational convenience.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39028940

RESUMEN

Myocardial ischemia-reperfusion (MIR)-induced arrhythmia remains a major cause of death in patients with cardiovascular diseases. The reduction of Cx43 has been known as a major inducer of arrhythmias after MIR, but the reason for the reduction of Cx43 remain largely unknown. This study aimed to find the key mechanism underlying the reduction of Cx43 after MIR and to screen out a herbal extract to attenuate arrhythmia after MIR. The differential expressed genes in peripheral blood mononuclear cell (PBMC) after MIR was analyzed using the data from several GEO datasets, followed by the identification in the PBMC and the serum of patients with myocardial infarction. Tumour necrosis factor superfamily protein 14 (TNFSF14) was increased in the the PBMC and the serum of patients, which might be associated to the injury after MIR. The toxic effects of TNFSF14 on cardiomyocytes was investigated in vitro. Valtrate was screened out from several herbal extracts. Its protection against TNFSF14-induced injury was evaluated in cardiomyocytes and animal models with MIR. Recombinant TNFSF14 protein not only suppressed the viability of cardiomyocytes, but also decreased Cx43 by stimulating the receptor LTßR. LTßR induces the competitive binding of MAX to MGA rather than the transcriptional factor c-Myc, thereby suppressing c-Myc-mediated transcription of Cx43. Valtrate promoted the N-linked glycosylation modification of LTßR, which reversed TNFSF14-induced reduction of Cx43 and attenuated arrhythmia after MIR. In all, Valtrate suppresses TNFSF14-induced reduction of Cx43 thereby attenuating arrhythmia after MIR.

4.
Physiol Plant ; 176(2): e14237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433182

RESUMEN

Trehalose, a biological macromolecule with osmotic adjustment properties, plays a crucial role during osmotic stress. As a psammophyte, Ammopiptanthus nanus relies on the accumulation of organic solutes to respond to osmotic stress. We utilized virus-induced gene silencing technology for the first time in the desert shrub A. nanus to confirm the central regulatory role of AnWRKY29 in osmotic stress, as it controls the transcription of AnTPS11 (trehalose-6-phosphate synthase 11). Further investigation has shown that AnHSP90 may interact with AnWRKY29. The AnHSP90 gene is sensitive to osmotic stress, underscoring its pivotal role in orchestrating the response to such adverse conditions. By directly targeting the W-box element within the AnTPS11 promoter, AnWRKY29 effectively enhances the transcriptional activity of AnTPS11, which is facilitated by AnHSP90. This discovery highlights the critical role of AnWRKY29 and AnHSP90 in enabling organisms to adapt to and cope effectively with osmotic stress, which can be a crucial factor in A. nanus survival and overall ecological resilience. Collectively, uncovering the molecular mechanisms underlying the osmotic responses of A. nanus is paramount for comprehending and augmenting the osmotic tolerance mechanisms of psammophyte shrub plants.


Asunto(s)
Fabaceae , Trehalosa , Presión Osmótica , Hojas de la Planta/genética , Ósmosis
5.
BMC Musculoskelet Disord ; 25(1): 229, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38515124

RESUMEN

OBJECTIVE: To evaluate the effect of mind-body exercise on improving knee osteoarthritis (KOA) and thereby informing osteoarthritis exercise rehabilitation. METHODS: The China National Knowledge Infrastructure (CNKI), Wanfang, PubMed/Medline, Cochrane Library, Web of Science, EBSCO, Embase, Scopus, and ProQuest databases were searched to identify randomized controlled trials (RCTs) that involved tai chi, yoga, and baduanjin interventions for KOA. The search period ranged from inception to October 25, 2022. The methodological quality of the included studies was evaluated by the Cochrane risk of bias assessment tool, and the included data were statistically analyzed and plotted using Review Manager 5.3 and Stata 14.0 software. RESULTS: We included 17 articles with a total of 1122 patients. Compared with the control group, mind-body exercise significantly improved patient pain (standardized mean difference (SMD) = -0.65, 95% confidence interval (CI) [-0.87, -0.42], p < 0.00001), stiffness (SMD = -0.75, 95% CI [-1.05, -0.45], p < 0.00001), physical function (SMD = -0.82, 95% CI [-1.03, -0.62], p < 0.00001), mental health (SMD = 0.31, 95% CI [0.11, 0.51], p = 0.002), and depression (SMD = -0.32, 95% CI [-0.50, -0.15], p = 0.0003). In terms of motor ability, mind-body exercise significantly increased the 6-min walking distance (SMD = 18.45, 95% CI [5.80, 31.10], p = 0.004) and decreased timed up and go test time (SMD = -1.15, 95% CI [-1.71, -0.59], p < 0.0001). CONCLUSIONS: The current study showed that mind-body exercise is safe and effective for KOA patients. However, given the methodological limitations of the included studies, additional high-quality evidence is needed to support the conclusions of this study.


Asunto(s)
Terapia por Ejercicio , Terapias Mente-Cuerpo , Osteoartritis de la Rodilla , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Osteoartritis de la Rodilla/rehabilitación , Osteoartritis de la Rodilla/terapia , Osteoartritis de la Rodilla/psicología , Osteoartritis de la Rodilla/fisiopatología , Terapias Mente-Cuerpo/métodos , Terapia por Ejercicio/métodos , Resultado del Tratamiento , Taichi Chuan/métodos , Yoga
6.
Ann Gen Psychiatry ; 23(1): 5, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184628

RESUMEN

BACKGROUND: Being one of the most widespread, pervasive, and troublesome illnesses in the world, depression causes dysfunction in various spheres of individual and social life. Regrettably, despite obtaining evidence-based antidepressant medication, up to 70% of people are going to continue to experience troublesome symptoms. Quetiapine, as one of the most commonly prescribed antipsychotic medication worldwide, has been reported as an effective augmentation strategy to antidepressants. The right quetiapine dose and personalized quetiapine treatment are frequently challenging for clinicians. This study aimed to identify important influencing variables for quetiapine dose by maximizing the use of data from real world, and develop a predictive model of quetiapine dose through machine learning techniques to support selections for treatment regimens. METHODS: The study comprised 308 depressed patients who were medicated with quetiapine and hospitalized in the First Hospital of Hebei Medical University, from November 1, 2019, to August 31, 2022. To identify the important variables influencing the dose of quetiapine, a univariate analysis was applied. The prediction abilities of nine machine learning models (XGBoost, LightGBM, RF, GBDT, SVM, LR, ANN, DT) were compared. Algorithm with the optimal model performance was chosen to develop the prediction model. RESULTS: Four predictors were selected from 38 variables by the univariate analysis (p < 0.05), including quetiapine TDM value, age, mean corpuscular hemoglobin concentration, and total bile acid. Ultimately, the XGBoost algorithm was used to create a prediction model for quetiapine dose that had the greatest predictive performance (accuracy = 0.69) out of nine models. In the testing cohort (62 cases), a total of 43 cases were correctly predicted of the quetiapine dose regimen. In dose subgroup analysis, AUROC for patients with daily dose of 100 mg, 200 mg, 300 mg and 400 mg were 0.99, 0.75, 0.93 and 0.86, respectively. CONCLUSIONS: In this work, machine learning techniques are used for the first time to estimate the dose of quetiapine for patients with depression, which is valuable for the clinical drug recommendations.

7.
Alzheimers Dement ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129310

RESUMEN

INTRODUCTION: The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS: The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS: Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION: These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS: The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.

8.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3050-3060, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-39041165

RESUMEN

To investigate the impact and potential mechanisms of extracts from different parts of Liparis nervosa on neuroinflammation by lipopolysaccharide(LPS)-induced BV-2 microglial cells. The materials of L. nervosa were subjected to crushing, ethanol extraction, and concentration to obtain an alcohol extract. Subsequently, the extract was further extracted to obtain petroleum ether extract, ethyl acetate extract, N-butanol extract, and aqueous phase extract. The ethyl acetate extract was separated into distillate(1)-(6)using D101 macroporous resin column chromatography. The experiment was divided into control group, LPS model group, L. nervosa extract group, and LPS + L. nervosa group. LPS was utilized to induce a neuroinflammatory cell model in BV-2 microglial cells. The Griess test was utilized for detecting the production of nitric oxide(NO) in the cell supernatant. Cell viability was detected by MTT assay. The release of interleukin-6(IL-6) and tumor necrosis factor alpha(TNF-α) in the cell supernatant was quantified using ELISA.RT-qPCR was utilized to assess the m RNA levels of pro-inflammatory cytokines inducible nitric oxide synthase(iNOS), cyclooxygenase-2(COX-2), interleukin( IL)-6, IL-1ß, and TNF-α. The protein expression of i NOS, COX-2, nuclear factor kappa-B p65(p65), p-p65, extracellular signal-regulated kinase(ERK), p-ERK, c-jun N-terminal kinase(JNK), p-JNK, p38 mitogen-activated protein kinase(p38), and p-p38 MAPK(p-p38) were also evaluated by Western blot. The chemical composition of active substances in L. nervosa was analyzed using the UHPLC-Q-Exactive Orbitrap technology and literature comparison. Our findings indicate that extracts from different parts of L. nervosa exhibit a significant reduction in the release of NO from LPS-induced BV-2 microglial cells.Specifically, the ethyl acetate extract demonstrates the most notable inhibitory effect without causing cell toxicity. Additionally, the distillate(6) extracted from the ethyl acetate exhibits a reduction in the m RNA and protein levels of i NOS, COX-2, IL-6, IL-1ß, and TNF-α in a dose-dependent manner, and it inhibits the protein expression of p-p65, p-ERK, p-p38, and p-JNK in LPS-induced BV-2 microglial cells. A total of 79 compounds in the distillate(6) were identified by mass spectrometry, including 12 confirmed compounds with anti-inflammatory effects. This study confirmed the remarkable efficacy of L. nervosa extract in the treatment of neuroinflammation, which may be achieved through the inhibition of NF-κB and MAPK signaling pathways.


Asunto(s)
Lipopolisacáridos , Microglía , Microglía/efectos de los fármacos , Microglía/metabolismo , Animales , Ratones , Óxido Nítrico/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Línea Celular , Interleucina-6/genética , Interleucina-6/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
J Hepatol ; 79(4): 933-944, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37302583

RESUMEN

BACKGROUND & AIMS: Current hepatocellular carcinoma (HCC) risk scores do not reflect changes in HCC risk resulting from liver disease progression/regression over time. We aimed to develop and validate two novel prediction models using multivariate longitudinal data, with or without cell-free DNA (cfDNA) signatures. METHODS: A total of 13,728 patients from two nationwide multicenter prospective observational cohorts, the majority of whom had chronic hepatitis B, were enrolled. aMAP score, as one of the most promising HCC prediction models, was evaluated for each patient. Low-pass whole-genome sequencing was used to derive multi-modal cfDNA fragmentomics features. A longitudinal discriminant analysis algorithm was used to model longitudinal profiles of patient biomarkers and estimate the risk of HCC development. RESULTS: We developed and externally validated two novel HCC prediction models with a greater accuracy, termed aMAP-2 and aMAP-2 Plus scores. The aMAP-2 score, calculated with longitudinal data on the aMAP score and alpha-fetoprotein values during an up to 8-year follow-up, performed superbly in the training and external validation cohorts (AUC 0.83-0.84). The aMAP-2 score showed further improvement and accurately divided aMAP-defined high-risk patients into two groups with 5-year cumulative HCC incidences of 23.4% and 4.1%, respectively (p = 0.0065). The aMAP-2 Plus score, which incorporates cfDNA signatures (nucleosome, fragment and motif scores), optimized the prediction of HCC development, especially for patients with cirrhosis (AUC 0.85-0.89). Importantly, the stepwise approach (aMAP -> aMAP-2 -> aMAP-2 Plus) stratified patients with cirrhosis into two groups, comprising 90% and 10% of the cohort, with an annual HCC incidence of 0.8% and 12.5%, respectively (p <0.0001). CONCLUSIONS: aMAP-2 and aMAP-2 Plus scores are highly accurate in predicting HCC. The stepwise application of aMAP scores provides an improved enrichment strategy, identifying patients at a high risk of HCC, which could effectively guide individualized HCC surveillance. IMPACT AND IMPLICATIONS: In this multicenter nationwide cohort study, we developed and externally validated two novel hepatocellular carcinoma (HCC) risk prediction models (called aMAP-2 and aMAP-2 Plus scores), using longitudinal discriminant analysis algorithm and longitudinal data (i.e., aMAP and alpha-fetoprotein) with or without the addition of cell-free DNA signatures, based on 13,728 patients from 61 centers across mainland China. Our findings demonstrated that the performance of aMAP-2 and aMAP-2 Plus scores was markedly better than the original aMAP score, and any other existing HCC risk scores across all subsets, especially for patients with cirrhosis. More importantly, the stepwise application of aMAP scores (aMAP -> aMAP-2 -> aMAP-2 Plus) provides an improved enrichment strategy, identifying patients at high risk of HCC, which could effectively guide individualized HCC surveillance.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Nucleicos Libres de Células , Hepatitis B Crónica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/etiología , alfa-Fetoproteínas , Estudios de Cohortes , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/genética , Cirrosis Hepática/complicaciones , Hepatitis B Crónica/complicaciones
10.
Small ; 19(29): e2300009, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36964988

RESUMEN

Three-dimensional (3D) structures constructed via coordination-driven self-assemblies have recently garnered increasing attention due to the challenges in structural design and potential applications. In particular, developing new strategy for the convenient and precise self-assemblies of 3D supramolecular structures is of utmost interest. Introducing the concept of self-coordination ligands, herein the design and synthesis of two meta-modified terpyridyl ligands with selective self-complementary coordination moiety are reported and their capability to assemble into two hourglass-shaped nanocages SA and SB is demonstrated. Within these 3D structures, the meta-modified terpyridyl unit preferably coordinates with itself to serve as concave part. By changing the arm length of the ligands, hexamer (SA) and tetramer (SB) are obtained respectively. In-depth studies on the assembly mechanism of SA and SB indicate that the dimers could be formed first via self-complementary coordination and play crucial roles in controlling the final structures. Moreover, both SA and SB can go through hierarchical self-assemblies in solution as well as on solid-liquid interface, which are characterized by transmission electron microscope (TEM) and scanning tunneling microscopy (STM). It is further demonstrated that various higher-order assembly structures can be achieved by tuning the environmental conditions.

11.
BMC Microbiol ; 23(1): 29, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703110

RESUMEN

BACKGROUND: Trametes gibbosa, which is a white-rot fungus of the Polyporaceae family found in the cold temperate zone, causes spongy white rot on wood. Laccase can oxidize benzene homologs and is one of the important oxidases for white rot fungi to degrade wood. However, the pathway of laccase synthesis in white rot fungi is unknown. RESULTS: The peak value of laccase activity reached 135.75 U/min/L on the 9th day. For laccase activity and RNA-seq data, gene expression was segmented into 24 modules. Turquoise and blue modules had greater associations with laccase activity (positively 0.94 and negatively -0.86, respectively). For biology function, these genes were concentrated on the cell cycle, citrate cycle, nicotinate, and nicotinamide metabolism, succinate dehydrogenase activity, flavin adenine dinucleotide binding, and oxidoreductase activity which are highly related to the laccase synthetic pathway. Among them, gene_8826 (MW199767), gene_7458 (MW199766), gene_61 (MW199765), gene_1741 (MH257605), and gene_11087 (MK805159) were identified as central genes. CONCLUSION: Laccase activity steadily increased in wood degradation. Laccase oxidation consumes oxygen to produce hydrogen ions and water during the degradation of wood. Some of the hydrogen ions produced can be combined by Flavin adenine dinucleotide (FAD) to form reduced Flavin dinucleotide (FADH2), which can be transmitted. Also, the fungus was starved of oxygen throughout fermentation, and the NADH and FADH2 are unable to transfer hydrogen under hypoxia, resulting in the inability of NAD and FAD to regenerate and inhibit the tricarboxylic acid cycle of cells. These key hub genes related to laccase activity play important roles in the molecular mechanisms of laccase synthesis for exploring industrial excellent strains.


Asunto(s)
Lacasa , Polyporaceae , Lacasa/genética , Lacasa/metabolismo , Trametes/genética , Trametes/metabolismo , Flavina-Adenina Dinucleótido/genética , Flavina-Adenina Dinucleótido/metabolismo , Transcriptoma , Protones , Polyporaceae/metabolismo , Oxígeno
12.
Ann Surg Oncol ; 30(12): 7442-7451, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37326809

RESUMEN

BACKGROUND: The purpose of this study was to investigate the predictive value of the 5-factor modified frailty index (mFI-5) for postoperative mortality, delirium and pneumonia in patients over 65 years of age undergoing elective lung cancer surgery. METHODS: Data were collected from a single-center retrospective cohort study conducted in a general tertiary hospital from January 2017 to August 2019. In total, the study included 1372 elderly patients aged over 65 who underwent elective lung cancer surgery. They were divided into frail group (mFI-5, 2-5), prefrail group (mFI-5, 1) and robust group (mFI-5, 0) on the basis of mFI-5 classification. The primary outcome was postoperative 1-year all-cause mortality. Secondary outcomes were postoperative pneumonia and postoperative delirium. RESULTS: Frailty group had the highest incidence of postoperative delirium (frailty 31.2% versus prefrailty 1.6% versus robust 1.5%, p < 0.001), postoperative pneumonia (frailty 23.5% versus prefrailty 7.2% versus robust 7.7%, p < 0.001), and postoperative 1-year mortality (frailty 7.0% versus prefrailty 2.2% versus robust 1.9%. p < 0.001). Frail patients have significantly longer length of hospitalization than those in the robust group and prefrail patients (p < 0.001). Multivariate analysis showed a clear link between frailty and increased risk of postoperative delirium (aOR 2.775, 95% CI 1.776-5.417, p < 0.001), postoperative pneumonia (aOR 3.291, 95% CI 2.169-4.993, p < 0.001) and postoperative 1-year mortality (aOR 3.364, 95% CI, 1.516-7.464, p = 0.003). CONCLUSIONS: mFI-5 has potential clinical utility in predicting postoperative death, delirium and pneumonia incidence in elderly patients undergoing radical lung cancer surgery. Frailty screening of patients (mFI-5) may provide benefits in risk stratification, targeted intervention efforts, and assist physicians in clinical decision-making.

13.
Br J Clin Pharmacol ; 89(9): 2714-2725, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37005382

RESUMEN

AIMS: This study aimed to establish a prediction model of quetiapine concentration in patients with schizophrenia and depression, based on real-world data via machine learning techniques to assist clinical regimen decisions. METHODS: A total of 650 cases of quetiapine therapeutic drug monitoring (TDM) data from 483 patients at the First Hospital of Hebei Medical University from 1 November 2019 to 31 August 2022 were included in the study. Univariate analysis and sequential forward selection (SFS) were implemented to screen the important variables influencing quetiapine TDM. After 10-fold cross validation, the algorithm with the optimal model performance was selected for predicting quetiapine TDM among nine models. SHapley Additive exPlanation was applied for model interpretation. RESULTS: Four variables (daily dose of quetiapine, type of mental illness, sex and CYP2D6 competitive substrates) were selected through univariate analysis (P < .05) and SFS to establish the models. The CatBoost algorithm with the best predictive ability (mean [SD] R2  = 0.63 ± 0.02, RMSE = 137.39 ± 10.56, MAE = 103.24 ± 7.23) was chosen for predicting quetiapine TDM among nine models. The mean (SD) accuracy of the predicted TDM within ±30% of the actual TDM was 49.46 ± 3.00%, and that of the recommended therapeutic range (200-750 ng mL-1 ) was 73.54 ± 8.3%. Compared with the PBPK model in a previous study, the CatBoost model shows slightly higher accuracy within ±100% of the actual value. CONCLUSIONS: This work is the first real-world study to predict the blood concentration of quetiapine in patients with schizophrenia and depression using artificial intelligent techniques, which is of significance and value for clinical medication guidance.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Fumarato de Quetiapina/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Antipsicóticos/uso terapéutico , Depresión/tratamiento farmacológico , Aprendizaje Automático
14.
Inorg Chem ; 62(20): 7795-7802, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37163494

RESUMEN

In this study, two trigonal prisms based on the 1,3,5-triazine motif (SA and SB), distinguished by hydrophobic groups, were prepared by the self-assembly of tritopic terpyridine ligands and Zn(II) ions. SA and SB exhibited high luminescence efficiencies in the solid state, overcoming the fluorescence quenching of the 1,3,5-triazine group caused by π-π interactions. Notably, SA and SB exhibited different luminescence behaviors in the solution state and aggregation state. SB with 12 alkyl chains exhibited extremely weak fluorescence in a dilute solution, but its fluorescence intensity and photoluminescence quantum yield (PLQY) were significantly enhanced in the aggregated state (with the increase in the water fraction), especially in the solid state. Different from the gradually enhanced efficiency of SB, the PLQY of SA gradually decreased with the increase in aggregation but still maintained a high luminescence efficiency. These two complexes exhibited different modes to solve the fluorescence quenching of 1,3,5-triazine in the solid state. The hierarchical self-assembly of SB exhibited nanorods owing to the hydrophobic interactions of alky chains, while SA aggregated into spheres under the influence of π-π interactions.

15.
Inorg Chem ; 62(13): 5105-5113, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36933227

RESUMEN

The introduction of a secondary interaction is an efficient strategy to modulate transition-metal-catalyzed ethylene (co)polymerization. In this contribution, O-donor groups were suspended on amine-imine ligands to synthesize a series of nickel complexes. By adjusting the interaction between the nickel metal center and the O-donor group on the ligands, these nickel complexes exhibited high activities for ethylene polymerization (up to 3.48 × 106 gPE·molNi-1·h-1) with high molecular weight up to 5.59 × 105 g·mol-1 and produced good polyethylene elastomers (strain recovery (SR) = 69-81%). In addition, these nickel complexes can catalyze the copolymerization of ethylene with vinyl acetic acid, 6-chloro-1-hexene, 10-undecylenic, 10-undecenoic acid, and 10-undecylenic alcohol to prepare the functionalized polyolefins.

16.
Cell ; 134(3): 375-7, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18692457

RESUMEN

Three decades after introducing market reforms and opening up to the rest of the world, China has become a major economic power. As the country prepares to show the world its sporting might, its competitiveness in life sciences may still need a boost.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Disciplinas de las Ciencias Biológicas/economía , Disciplinas de las Ciencias Biológicas/educación , China , Competencia Económica , Educación de Postgrado/economía , Deportes
17.
Ecotoxicol Environ Saf ; 264: 115434, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37690174

RESUMEN

Bactrocera dorsalis is a well-known invasive pest that causes considerable ecological and economic losses worldwild. Although it has a wide environmental tolerance, few studies have reported its mechanism of adaptation to multiple sub-lethal environmental stresses. In this study, 38, 41, 39 and 34 metabolites changed significantly in B. dorsalis under four sub-lethal stresses (heat, cold, desiccation and hypoxia), as found by the metabolomic method. Therein, lactic acid and pyruvic acid were induced, whereas metabolites in the tricarboxylic acid (TCA) cycle such as citric acid, α-ketoglutarate acid, malic acid and fumaric acid were reduced under at least one of the stresses. Enzyme activity and quantitative polymerase chain reaction (qPCR) analyses verified the repression of pyruvic acid proceeding into the TCA cycle. In addition, the levels of several cryoprotectants and membrane fatty acids in B. dorsalis were altered. The findings indicated that B. dorsalis has evolved shared metabolic pathways to adapt to heat, hypoxia and desiccation stresses, such as reducing energy consumption by activating the anaerobic glycolytic metabolism. Cryoprotectants and membrane fatty acids were produced to improve the efficiency of stress resistance. This study revealed the unique and generic crossed physiological mechanism of insects to adapt to various environmental stresses.


Asunto(s)
Ácido Pirúvico , Tephritidae , Animales , Drosophila , Ácidos Grasos , Hipoxia
18.
Neural Plast ; 2023: 4226139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124874

RESUMEN

Hypoxic-ischemic white matter injury (WMI) pathogenesis in preterm infants is not well established, and iron-related proteins in the brain may play an important role in imbalanced iron metabolism. We aimed to investigate the iron-related protein changes in neonatal rats after hypoxia-ischemia (HI), clarify the role of iron-related proteins in hypoxic-ischemic WMI, and potentially provide a new target for the clinical treatment of hypoxic-ischemic WMI in preterm infants. We adopted a WMI animal model of bilateral common carotid artery electrocoagulation combined with hypoxia in neonatal 3-day-old Sprague-Dawley rats. We observed basic myelin protein (MBP) and iron-related protein expression in the brain (ferritin, transferrin receptor [TfR], and membrane iron transporter 1 [FPN1]) via Western blot and double immunofluorescence staining. The expression of MBP in the WMI group was significantly downregulated on postoperative days (PODs) 14, 28, and 56. Ferritin levels were significantly increased on PODs 3, 7, 14, and 28 and were most significant on POD 28, returning to the sham group level on POD 56. FPN1 levels were significantly increased on PODs 7, 28, and 56 and were still higher than those in the sham group on POD 56. TfR expression was significantly upregulated on PODs 1, 7, and 28 and returned to the sham group level on POD 56. Immunofluorescence staining showed that ferritin, TfR, and FPN1 were expressed in neurons, blood vessels, and oligodendrocytes in the cortex and corpus callosum on POD 28. Compared with the sham group, the immune-positive markers of three proteins in the WMI group were significantly increased. The expression of iron-related proteins in the brain (ferritin, FPN1, and TfR) showed spatiotemporal dynamic changes and may play an important role in hypoxic-ischemic WMI.


Asunto(s)
Lesiones Encefálicas , Ferritinas , Hipoxia-Isquemia Encefálica , Animales , Humanos , Recién Nacido , Ratas , Animales Recién Nacidos , Encéfalo/metabolismo , Ferritinas/metabolismo , Hipoxia , Hipoxia-Isquemia Encefálica/metabolismo , Recien Nacido Prematuro , Hierro/metabolismo , Isquemia , Ratas Sprague-Dawley
19.
Pestic Biochem Physiol ; 190: 105334, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36740342

RESUMEN

Bursaphelenchus xylophilus is the causative agent of pine wilt disease. It has caused devastating damage to ecosystems worldwide, owing to the characteristic of being widely spread and uncontrollable. However, the current methods of control are mainly based on pesticides, which can cause irreversible damage to the ecosystem. Therefore, the search for new drug targets and the development of environmentally friendly nematicides is especially valuable. In this study, three key genes of the xenobiotic detoxification pathways were cloned from B. xylophilus, which were subsequently subjected to bioinformatic analysis. The bioassay experiment was carried out to determine the concentration of matrine required for further tests. Subsequently, enzyme activity detection and three gene expression pattern analysis were performed on matrine treated nematodes. Finally, RNA interference was conducted to verify the functions carried out by the three genes in combating matrine. The results indicated that cytochrome P450 and glutathione S-transferase of B. xylophilus were activated by matrine, which induced high expression of BxCYP33C4, BxGST1, and BxGST3. After RNA interference of three genes of B. xylophilus, the sensitivity of B. xylophilus to matrine was increased and the survival rate of nematodes was reduced to various degrees in comparison to the control group. Overall, the results fully demonstrated that BxCYP33C4, BxGST1, and BxGST3 are valuable drug targets for B. xylophilus. Furthermore, the results suggested that matrine has value for development and exploitation in the prevention and treatment of B. xylophilus.


Asunto(s)
Ecosistema , Tylenchida , Animales , Matrinas , Xylophilus , Xenobióticos/toxicidad , Xenobióticos/metabolismo , Tylenchida/genética , Tylenchida/metabolismo , Enfermedades de las Plantas/prevención & control
20.
Pestic Biochem Physiol ; 194: 105527, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532336

RESUMEN

Bursaphelenchus xylophilus (Pine wood nematode, PWN) has become a worldwide forest disease due to its rapid infection ability, high lethality and difficulty in control. The main means of countering B. xylophilus is currently chemical control, but nematicides can present problems such as environmental pollution and drug resistance. The development of novel environmentally-friendly nematicides has thus become a focus of recent research. In this study, BxUGT3 and BxUGT34, which might be related to detoxification, were investigated by comparing transcriptomic and WGCNA approaches. Three other genes with a similar expression pattern, BxUGT13, BxUGT14, and BxUGT16, were found by gene family analysis. Further bioassays and qPCR assays confirmed that these five genes showed significant changes in transcript levels upon exposure to α-pinene and carvone, demonstrating that they respond to exogenous nematicidal substances. Finally, RNAi and bioassays showed that B. xylophilus with silenced BxUGT16 had increased mortality in the face of α-pinene and carvone stress, suggesting that BxUGT16 plays an important role in detoxification. Taken together, this study used novel molecular research methods, explored the detoxification mechanism of B. xylophilus at a transcriptomic level, and revealed a molecular target for the development of novel biopesticides.


Asunto(s)
Transcriptoma , Tylenchida , Animales , Xylophilus , Antinematodos/farmacología , Tylenchida/genética , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA