Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2400173, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822718

RESUMEN

Perovskite solar cells, recognized for their high photovoltaic conversion efficiency (PCE), cost-effectiveness, and simple fabrication, face challenges in PCE improvement due to structural defects in polycrystalline films. This study introduces a novel fabrication method for perovskite films using methylammonium chloride (MACl) to align grain orientation uniformly, followed by a high-pressure process to merge these grains into a texture resembling single-crystal perovskite. Employing advanced visual fluorescence microscopy, charge dynamics in these films are analyzed, uncovering the significant impact of grain boundaries on photo-generated charge transport within perovskite crystals. A key discovery is that optimal charge transport efficiency and speed occur in grain centers when the grain size exceeds 10 µm, challenging the traditional view that efficiency peaks when grain size surpasses film thickness to form a monolayer. Additionally, the presence of large-sized grains enhances ion activation energy, reducing ion migration under light and improving resistance to photo-induced degradation. In application, a perovskite solar cell module with large grains achieve a PCE of 22.45%, maintaining performance with no significant degradation under continuous white LED light at 100 mA cm-2 for over 1000 h. This study offers a new approach to perovskite film fabrication and insights into optimizing perovskite solar cell modules.

2.
Small ; : e2402385, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742952

RESUMEN

Non-radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non-radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm.

3.
ACS Appl Mater Interfaces ; 16(19): 25385-25392, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690867

RESUMEN

In the endeavor to develop advanced photodetectors (PDs) with superior performance, all-inorganic perovskites, recognized for their outstanding photoelectric properties, have emerged as highly promising materials. Due to their unique electronic structure and band characteristics, the majority of all-inorganic perovskite materials are not sensitive to near-infrared (NIR) light. Here, we demonstrate the fabrication of a high-performance broadband PD comprising CsPbBr3 perovskite NCs/Y6 planar heterojunctions. The incorporation of Y6 not only facilitates charge transfer from CsPbBr3 NCs to Y6 for enhancing photodetection performance under visible illumination but also broadens the absorption spectrum range of the whole device toward the NIR regime. As a result, the heterojunction PD exhibits a photo-to-dark-current ratio above 105, a dynamic range of 149.5 dB, and an impressive lowest detection limit of incident power density of 1.6 nW/cm2 under 505 nm illumination. In the NIR regime, where photon energy is below the bandgap of CsPbBr3, electron-hole pairs can still be produced in the Y6 layer even when illuminated at 1120 nm. Consequently, photodetection is uniquely possible in PDs that incorporate heterojunctions when the illumination wavelength is longer than 565 nm. At 850 nm, the heterojunction device is capable of detecting light with power densities as low as 1.3 µW/cm2 corresponding to a LDR of 99.8 dB. The exceptional performance is attributed to the creation of a heterojunction between CsPbBr3 NCs and Y6. These findings propose a novel approach for developing broadband PDs based on perovskite NC materials.

4.
ACS Appl Mater Interfaces ; 16(1): 655-668, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38134003

RESUMEN

The two-step deposition method offers significant advantages in the production of high-performance planar perovskite solar cells (PSCs). Nevertheless, there are still numerous challenges in regulating perovskite crystallization during the two-step process. In this work, two-dimensional (2D) material antimonene quantum sheets (AMQSs) as an additive are introduced to regulate the crystallization process of perovskite. As a result, perovskite films with high crystalline quality and vertical growth orientation are obtained by AMQSs providing heterogeneous nucleation sites with the penetration of a mixture solution of AMQSs and FAI into the PbI2 layer. Also, the influence mechanism of AMQSs on the crystallization of perovskite film is analyzed in details. At the same time, due to the chemical interaction between antimonene and the uncoordinated Pb2+, the defects in the perovskite are efficiently passivated. In addition, the energy level at the perovskite/SnO2 interface becomes more matched, leading to improved charge transport and extraction with the incorporation of AMQSs. Benefiting from the versatile AMQSs, the power conversion efficiency (PCE) of PSCs made by PbI2 + FAI:AMQSs is improved from 20.65 to 22.31% with the vastly enhanced Jsc and Voc. The ambient and operational stability of the unencapsulated PSCs fabricated using the PbI2 + FAI:AMQSs method were significantly improved, retaining 80% of the original PCE after being stored in a dark environment at a relative humidity of 30-40% for 18 days and 83% of the original PCE following continuous AM 1.5G illumination for 200 h.

5.
ACS Nano ; 18(33): 21939-21947, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39115247

RESUMEN

In moiré crystals resulting from the stacking of twisted two-dimensional (2D) layered materials, a subtle adjustment in the twist angle surprisingly gives rise to a wide range of correlated optical and electrical properties. Herein, we report the synthesis of supertwisted WS2 spirals and the observation of giant second harmonic generation (SHG) in these spirals. Supertwisted WS2 spirals featuring different twist angles are synthesized on a Euclidean or step-edge particle-induced non-Euclidean surface using carefully designed water-assisted chemical vapor deposition. We observed an oscillatory dependence of SHG intensity on layer number, attributed to atomically phase-matched nonlinear dipoles within layers of supertwisted spiral crystals where inversion symmetry is restored. Through an investigation into the twist angle evolution of SHG intensity, we discovered that the stacking model between layers plays a crucial role in determining the nonlinearity, and the SHG signals in supertwisted spirals exhibit enhancements by a factor of 2 to 136 when compared with the SHG of the single-layer structure. These findings provide helpful perspectives on the rational growth of 2D twisted structures and the implementation of twist angle adjustable endowing them great potential for exploring strong coupling correlation physics and applications in the field of twistronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA