Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 477(7364): 349-53, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21857681

RESUMEN

The human mind and body respond to stress, a state of perceived threat to homeostasis, by activating the sympathetic nervous system and secreting the catecholamines adrenaline and noradrenaline in the 'fight-or-flight' response. The stress response is generally transient because its accompanying effects (for example, immunosuppression, growth inhibition and enhanced catabolism) can be harmful in the long term. When chronic, the stress response can be associated with disease symptoms such as peptic ulcers or cardiovascular disorders, and epidemiological studies strongly indicate that chronic stress leads to DNA damage. This stress-induced DNA damage may promote ageing, tumorigenesis, neuropsychiatric conditions and miscarriages. However, the mechanisms by which these DNA-damage events occur in response to stress are unknown. The stress hormone adrenaline stimulates ß(2)-adrenoreceptors that are expressed throughout the body, including in germline cells and zygotic embryos. Activated ß(2)-adrenoreceptors promote Gs-protein-dependent activation of protein kinase A (PKA), followed by the recruitment of ß-arrestins, which desensitize G-protein signalling and function as signal transducers in their own right. Here we elucidate a molecular mechanism by which ß-adrenergic catecholamines, acting through both Gs-PKA and ß-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, thus synergistically leading to the accumulation of DNA damage. In mice and in human cell lines, ß-arrestin-1 (ARRB1), activated via ß(2)-adrenoreceptors, facilitates AKT-mediated activation of MDM2 and also promotes MDM2 binding to, and degradation of, p53, by acting as a molecular scaffold. Catecholamine-induced DNA damage is abrogated in Arrb1-knockout (Arrb1(-/-)) mice, which show preserved p53 levels in both the thymus, an organ that responds prominently to acute or chronic stress, and in the testes, in which paternal stress may affect the offspring's genome. Our results highlight the emerging role of ARRB1 as an E3-ligase adaptor in the nucleus, and reveal how DNA damage may accumulate in response to chronic stress.


Asunto(s)
Arrestinas/metabolismo , Daño del ADN , Receptores Adrenérgicos beta 2/metabolismo , Estrés Fisiológico/fisiología , Animales , Arrestinas/deficiencia , Arrestinas/genética , Catecolaminas/farmacología , Línea Celular , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibroblastos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/efectos de los fármacos , Testículo/metabolismo , Timo/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , beta-Arrestina 1 , beta-Arrestinas
2.
Proc Natl Acad Sci U S A ; 107(34): 15299-304, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20686112

RESUMEN

beta-Arrestin-mediated signaling downstream of seven transmembrane receptors (7TMRs) is a relatively new paradigm for signaling by these receptors. We examined changes in protein phosphorylation occurring when HEK293 cells expressing the angiotensin II type 1A receptor (AT1aR) were stimulated with the beta-arrestin-biased ligand Sar(1), Ile(4), Ile(8)-angiotensin (SII), a ligand previously found to signal through beta-arrestin-dependent, G protein-independent mechanisms. Using a phospho-antibody array containing 46 antibodies against signaling molecules, we found that phosphorylation of 35 proteins increased upon SII stimulation. These SII-mediated phosphorylation events were abrogated after depletion of beta-arrestin 2 through siRNA-mediated knockdown. We also performed an MS-based quantitative phosphoproteome analysis after SII stimulation using a strategy of stable isotope labeling of amino acids in cell culture (SILAC). We identified 1,555 phosphoproteins (4,552 unique phosphopeptides), of which 171 proteins (222 phosphopeptides) showed increased phosphorylation, and 53 (66 phosphopeptides) showed decreased phosphorylation upon SII stimulation of the AT1aR. This study identified 38 protein kinases and three phosphatases whose phosphorylation status changed upon SII treatment. Using computational approaches, we performed system-based analyses examining the beta-arrestin-mediated phosphoproteome including construction of a kinase-substrate network for beta-arrestin-mediated AT1aR signaling. Our analysis demonstrates that beta-arrestin-dependent signaling processes are more diverse than previously appreciated. Notably, our analysis identifies an AT1aR-mediated cytoskeletal reorganization network whereby beta-arrestin regulates phosphorylation of several key proteins, including cofilin and slingshot. This study provides a system-based view of beta-arrestin-mediated phosphorylation events downstream of a 7TMR and opens avenues for research in a rapidly evolving area of 7TMR signaling.


Asunto(s)
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Angiotensina II/farmacología , Arrestinas/antagonistas & inhibidores , Arrestinas/genética , Línea Celular , Citoesqueleto/metabolismo , Humanos , Ligandos , Modelos Biológicos , Datos de Secuencia Molecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteoma/genética , Proteoma/metabolismo , ARN Interferente Pequeño/genética , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal , Biología de Sistemas , Arrestina beta 2 , beta-Arrestinas
3.
Nat Cell Biol ; 7(7): 665-74, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15951807

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) influences cytotoxicity, translocating to the nucleus during apoptosis. Here we report a signalling pathway in which nitric oxide (NO) generation that follows apoptotic stimulation elicits S-nitrosylation of GAPDH, which triggers binding to Siah1 (an E3 ubiquitin ligase), nuclear translocation and apoptosis. S-nitrosylation of GAPDH augments its binding to Siah1, whose nuclear localization signal mediates translocation of GAPDH. GAPDH stabilizes Siah1, facilitating its degradation of nuclear proteins. Activation of macrophages by endotoxin and of neurons by glutamate elicits GAPDH-Siah1 binding, nuclear translocation and apoptosis, which are prevented by NO deletion. The NO-S-nitrosylation-GAPDH-Siah1 cascade may represent an important molecular mechanism of cytotoxicity.


Asunto(s)
Apoptosis/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/fisiología , Proteínas Nucleares/metabolismo , S-Nitrosotioles/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Cisteína/metabolismo , Citoplasma/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Microscopía Fluorescente , Modelos Biológicos , Mutación , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico Sintasa de Tipo II , Proteínas Nucleares/genética , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , S-Nitrosoglutatión/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transfección , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
4.
Cell Death Differ ; 27(4): 1200-1213, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31506606

RESUMEN

Cellular DNA is constantly under threat from internal and external insults, consequently multiple pathways have evolved to maintain chromosomal fidelity. Our previous studies revealed that chronic stress, mediated by continuous stimulation of the ß2-adrenergic-ßarrestin-1 signaling axis suppresses activity of the tumor suppressor p53 and impairs genomic integrity. In this pathway, ßarrestin-1 (ßarr1) acts as a molecular scaffold to promote the binding and degradation of p53 by the E3-ubiquitin ligase, MDM2. We sought to determine whether ßarr1 plays additional roles in the repair of DNA damage. Here we demonstrate that in mice ßarr1 interacts with p53-binding protein 1 (53BP1) with major consequences for the repair of DNA double-strand breaks. 53BP1 is a principle component of the DNA damage response, and when recruited to the site of double-strand breaks in DNA, 53BP1 plays an important role coordinating repair of these toxic lesions. Here, we report that ßarr1 directs 53BP1 degradation by acting as a scaffold for the E3-ubiquitin ligase Rad18. Consequently, knockdown of ßarr1 stabilizes 53BP1 augmenting the number of 53BP1 DNA damage repair foci following exposure to ionizing radiation. Accordingly, ßarr1 loss leads to a marked increase in irradiation resistance both in cells and in vivo. Thus, ßarr1 is an important regulator of double strand break repair, and disruption of the ßarr1/53BP1 interaction offers an attractive strategy to protect cells against high levels of exposure to ionizing radiation.


Asunto(s)
Reparación del ADN , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , beta-Arrestina 1/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Daño del ADN , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Intestinos/patología , Ratones Endogámicos C57BL , Unión Proteica/efectos de la radiación , Procesamiento Proteico-Postraduccional/efectos de la radiación , Tolerancia a Radiación/efectos de la radiación , Radiación Ionizante
5.
Biochim Biophys Acta ; 1762(5): 502-9, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16574384

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a classic glycolytic enzyme, and accumulating evidence has suggested that GAPDH is a multi-functional protein. In particular, its role as a mediator for cell death has been highlighted. For the last decade, many groups reported that a pool of GAPDH translocates to the nucleus under a variety of stressors, most of which are associated with oxidative stress. At the molecular level, sequential steps lead to nuclear translocation of GAPDH during cell death as follows: first, a catalytic cysteine in GAPDH (C150 in rat GAPDH) is S-nitrosylated by nitric oxide (NO) that is generated from inducible nitric oxide synthase (iNOS) and/or neuronal NOS (nNOS); second, the modified GAPDH becomes capable of binding with Siah1, an E3 ubiquitin ligase, and stabilizes it; third, the GAPDH-Siah protein complex translocates to the nucleus, dependent on Siah1's nuclear localization signal, and degrades Siah1's substrates in the nucleus, which results in cytotoxicity. A recent report suggests that GAPDH may be genetically associated with late-onset of Alzheimer's disease. (-)-deprenyl, which has originally been used as a monoamine oxidase inhibitor for Parkinson's disease, binds to GAPDH and displays neuroprotective actions, but its molecular mechanism is still unclear. The NO/GAPDH/Siah1 death cascade will contribute to the molecular understanding of a role of GAPDH in neurodegenerative disorders and help to establish novel therapeutic strategies.


Asunto(s)
Apoptosis , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Degeneración Nerviosa , Óxido Nítrico/metabolismo , Transporte Activo de Núcleo Celular , Animales , Humanos , Proteínas Nucleares/metabolismo
6.
Cell Cycle ; 12(2): 219-24, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23287463

RESUMEN

Chronic stress is known to have a profound negative impact on human health and has been suggested to influence a number of disease states. However, the mechanisms underlying the deleterious effects of stress remain largely unknown. Stress is known to promote the release of epinephrine, a catecholamine stress hormone that binds to ß(2)-adrenergic receptors (ß(2)ARs) with high affinity. Our previous work has demonstrated that chronic stimulation of a ß(2)AR-ß-arrestin-1-mediated signaling pathway by infusion of isoproterenol suppresses p53 levels and impairs genomic integrity. In this pathway, ß-arrestin-1, which is activated via ß(2)ARs, facilitates the AKT-mediated activation of Mdm2 and functions as a molecular scaffold to promote the binding and degradation of p53 by the E3-ubiquitin ligase, Mdm2. Here, we show that chronic restraint stress in mice recapitulates the effects of isoproterenol infusion to reduce p53 levels and results in the accumulation of DNA damage in the frontal cortex of the brain, two effects that are abrogated by the ß-blocker, propranolol and by genetic deletion of ß-arrestin-1. These data suggest that the ß(2)AR-ß-arrestin-1 signaling pathway may represent an attractive therapeutic target to prevent some of the negative consequences of stress in the treatment of stress-related disorders.


Asunto(s)
Arrestinas/metabolismo , Daño del ADN/fisiología , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/fisiología , Animales , Anticuerpos Monoclonales , Arrestinas/genética , Daño del ADN/efectos de los fármacos , Epinefrina/metabolismo , Histonas/inmunología , Sistema Hipotálamo-Hipofisario/fisiología , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Hipófiso-Suprarrenal/fisiología , Propranolol/farmacología , Transducción de Señal/fisiología , Sistema Nervioso Simpático/fisiología , beta-Arrestina 1 , beta-Arrestinas
7.
Sci Signal ; 4(185): ra51, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21868357

RESUMEN

Phosphorylation of G protein-coupled receptors (GPCRs, which are also known as seven-transmembrane spanning receptors) by GPCR kinases (GRKs) plays essential roles in the regulation of receptor function by promoting interactions of the receptors with ß-arrestins. These multifunctional adaptor proteins desensitize GPCRs, by reducing receptor coupling to G proteins and facilitating receptor internalization, and mediate GPCR signaling through ß-arrestin-specific pathways. Detailed mapping of the phosphorylation sites on GPCRs targeted by individual GRKs and an understanding of how these sites regulate the specific functional consequences of ß-arrestin engagement may aid in the discovery of therapeutic agents targeting individual ß-arrestin functions. The ß(2)-adrenergic receptor (ß(2)AR) has many serine and threonine residues in the carboxyl-terminal tail and the intracellular loops, which are potential sites of phosphorylation. We monitored the phosphorylation of the ß(2)AR at specific sites upon stimulation with an agonist that promotes signaling by both G protein-mediated and ß-arrestin-mediated pathways or with a biased ligand that promotes signaling only through ß-arrestin-mediated events in the presence of the full complement of GRKs or when either GRK2 or GRK6 was depleted. We correlated the specific and distinct patterns of receptor phosphorylation by individual GRKs with the functions of ß-arrestins and propose that the distinct phosphorylation patterns established by different GRKs establish a "barcode" that imparts distinct conformations to the recruited ß-arrestin, thus regulating its functional activities.


Asunto(s)
Arrestinas/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/fisiología , Arrestinas/genética , Quinasas de Receptores Acoplados a Proteína-G/genética , Células HEK293 , Humanos , Fosforilación/fisiología , Estructura Terciaria de Proteína , Receptores Adrenérgicos beta 2/genética , beta-Arrestinas
8.
Nat Cell Biol ; 12(11): 1094-100, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20972425

RESUMEN

S-nitrosylation of proteins by nitric oxide is a major mode of signalling in cells. S-nitrosylation can mediate the regulation of a range of proteins, including prominent nuclear proteins, such as HDAC2 (ref. 2) and PARP1 (ref. 3). The high reactivity of the nitric oxide group with protein thiols, but the selective nature of nitrosylation within the cell, implies the existence of targeting mechanisms. Specificity of nitric oxide signalling is often achieved by the binding of nitric oxide synthase (NOS) to target proteins, either directly or through scaffolding proteins such as PSD-95 (ref. 5) and CAPON. As the three principal isoforms of NOS--neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS)--are primarily non-nuclear, the mechanisms by which nuclear proteins are selectively nitrosylated have been elusive. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is physiologically nitrosylated at its Cys 150 residue. Nitrosylated GAPDH (SNO-GAPDH) binds to Siah1, which possesses a nuclear localization signal, and is transported to the nucleus. Here, we show that SNO-GAPDH physiologically transnitrosylates nuclear proteins, including the deacetylating enzyme sirtuin-1 (SIRT1), histone deacetylase-2 (HDAC2) and DNA-activated protein kinase (DNA-PK). Our findings reveal a novel mechanism for targeted nitrosylation of nuclear proteins and suggest that protein-protein transfer of nitric oxide groups may be a general mechanism in cellular signal transduction.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Histona Desacetilasa 2/metabolismo , Proteínas Nucleares/metabolismo , Sirtuina 1/metabolismo , Células Cultivadas , Humanos , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores
9.
J Biol Chem ; 284(13): 8855-65, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19171933

RESUMEN

beta-Arrestins, originally discovered as terminators of G protein-coupled receptor signaling, have more recently been appreciated to also function as signal transducers in their own right, although the consequences for cellular physiology have not been well understood. Here we demonstrate that beta-arrestin-2 mediates anti-apoptotic cytoprotective signaling stimulated by a typical 7-transmembrane receptor the angiotensin ATII 1A receptor, expressed endogenously in rat vascular smooth muscle cells or by transfection in HEK-293 cells. Receptor stimulation leads to concerted activation of two pathways, ERK/p90RSK and PI3K/AKT, which converge to phosphorylate and inactivate the pro-apoptotic protein BAD. Anti-apoptotic effects as well as pathway activities can be stimulated by an angiotensin analog (SII), which has been previously shown to activate beta-arrestin but not G protein-dependent signaling, and are abrogated by beta-arrestin-2 small interfering RNA. These findings establish a key role for beta-arrestin-2 in mediating cellular cytoprotective functions by a 7-transmembrane receptor and define the biochemical pathways involved.


Asunto(s)
Apoptosis/fisiología , Arrestinas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/fisiología , Proteína Letal Asociada a bcl/metabolismo , Animales , Arrestinas/genética , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Masculino , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteína Letal Asociada a bcl/genética , Arrestina beta 2 , beta-Arrestinas
10.
Dev Cell ; 17(4): 443-58, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19853559

RESUMEN

Arrestins were identified as mediators of G protein-coupled receptor (GPCR) desensitization and endocytosis. However, it is now clear that they scaffold many intracellular signaling networks to modulate the strength and duration of signaling by diverse types of receptors--including those relevant to the Hedgehog, Wnt, Notch, and TGFbeta pathways--and downstream kinases such as the MAPK and Akt/PI3K cascades. The involvement of arrestins in many discrete developmental signaling events suggests an indispensable role for these multifaceted molecular scaffolds.


Asunto(s)
Arrestinas/fisiología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Animales , Humanos , beta-Arrestinas
11.
Neuron ; 63(1): 81-91, 2009 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-19607794

RESUMEN

We recently reported a cell death cascade whereby cellular stressors activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The nuclear GAPDH/Siah complex augments p300/CBP-associated acetylation of nuclear proteins, including p53, which mediate cell death. We report a 52 kDa cytosolic protein, GOSPEL, which physiologically binds GAPDH, in competition with Siah, retaining GAPDH in the cytosol and preventing its nuclear translocation. GOSPEL is neuroprotective, as its overexpression prevents NMDA-glutamate excitotoxicity while its depletion enhances death in primary neuron cultures. S-nitrosylation of GOSPEL at cysteine 47 enhances GAPDH-GOSPEL binding and the neuroprotective actions of GOSPEL. In intact mice, virally delivered GOSPEL selectively diminishes NMDA neurotoxicity. Thus, GOSPEL may physiologically regulate the viability of neurons and other cells.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Intoxicación por MPTP/prevención & control , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/uso terapéutico , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , 2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , Animales , Unión Competitiva/efectos de los fármacos , Encéfalo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Agonistas de Aminoácidos Excitadores/farmacología , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Ratones Noqueados , Peso Molecular , Mutación , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa de Tipo I/deficiencia , Proteínas Nucleares/metabolismo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , S-Nitrosoglutatión/farmacología , Transfección/métodos , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/metabolismo
12.
Nat Cell Biol ; 10(7): 866-73, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18552833

RESUMEN

Besides its role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) initiates a cell death cascade. Diverse apoptotic stimuli activate inducible nitric oxide synthase (iNOS) or neuronal NOS (nNOS), with the generated nitric oxide (NO) S-nitrosylating GAPDH, abolishing its catalytic activity and conferring on it the ability to bind to Siah1, an E3-ubiquitin-ligase with a nuclear localization signal (NLS). The GAPDH-Siah1 protein complex, in turn, translocates to the nucleus and mediates cell death; these processes are blocked by procedures that interfere with GAPDH-Siah1 binding. Nuclear events induced by GAPDH to kill cells have been obscure. Here we show that nuclear GAPDH is acetylated at Lys 160 by the acetyltransferase p300/CREB binding protein (CBP) through direct protein interaction, which in turn stimulates the acetylation and catalytic activity of p300/CBP. Consequently, downstream targets of p300/CBP, such as p53 (Refs 10,11,12,13,14,15), are activated and cause cell death. A dominant-negative mutant GAPDH with the substitution of Lys 160 to Arg (GAPDH-K160R) prevents activation of p300/CBP, blocks induction of apoptotic genes and decreases cell death. Our findings reveal a pathway in which NO-induced nuclear GAPDH mediates cell death through p300/CBP.


Asunto(s)
Apoptosis/fisiología , Núcleo Celular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Óxido Nítrico/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Línea Celular , Activación Enzimática , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción p300-CBP/genética
13.
Annu Rev Pharmacol Toxicol ; 47: 117-41, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-16879082

RESUMEN

The past few decades have revealed that cell death can be precisely programmed with two principal forms, apoptosis and necrosis. Besides pathophysiological alterations, physiologic processes, such as the pruning of neurons during normal development and the involution of the thymus, involve apoptosis. This review focuses on the role of inter- and intracellular signaling systems in cell death, especially in the nervous system. Among neurotransmitters, glutamate and nitric oxide have been most extensively characterized and contribute to cell death in excitotoxic damage, especially in stroke and possibly in neurodegenerative diseases. Within cells, calcium, the most prominent of all intracellular messengers, mediates diverse forms of cell death with actions modulated by many proteins, including IP3 receptors, calcineurin, calpain, and cytochrome c.


Asunto(s)
Muerte Celular/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neuronas/fisiología , Calcio/fisiología , Ácido Glutámico/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Óxido Nítrico/fisiología
14.
Cell Mol Neurobiol ; 26(4-6): 527-38, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16633896

RESUMEN

1. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extremely abundant glycolytic enzyme, and exemplifies the class of proteins with multiple, seemingly unrelated functions. Recent studies indicate that it is a major intracellular messenger mediating apoptotic cell death. This paper reviews the GAPDH cell death cascade and discusses its clinical relevance. 2. A wide range of apoptotic stimuli activate NO formation, which S-nitrosylates GAPDH. The S-nitrosylation abolishes catalytic activity and confers upon GAPDH the ability to bind to Siah, an E3-ubiquitin-ligase, which translocates GAPDH to the nucleus. In the nucleus, GAPDH stabilizes the rapidly turning over Siah, enabling it to degrade selected target proteins and affect apoptosis. 3. The cytotoxicity of mutant Huntingtin (mHtt) requires nuclear translocation which appears to be mediated via a ternary complex of GAPDH-Siah-mHtt. The neuroprotective actions of the monoamine oxidase inhibitor R-(-)-deprenyl (deprenyl) reflect blockade of GAPDH-Siah binding. Thus, novel cytoprotective therapies may emerge from agents that prevent GAPDH-Siah binding.


Asunto(s)
Apoptosis/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasas/fisiología , Óxido Nítrico/fisiología , Proteínas Nucleares/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Modelos Biológicos , Enfermedades Neurodegenerativas/etiología , Proteínas Nucleares/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
15.
Proc Natl Acad Sci U S A ; 103(10): 3887-9, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16505364

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) participates in a cell death cascade wherein a variety of stimuli activate nitric oxide (NO) synthases with NO nitrosylating GAPDH, conferring on it the ability to bind to Siah, an E3-ubiquitin-ligase, whose nuclear localization signal enables the GAPDH/Siah protein complex to translocate to the nucleus where degradation of Siah targets elicits cell death. R-(-)-Deprenyl (deprenyl) ameliorates the progression of disability in early Parkinson's disease and also has neuroprotective actions. We show that deprenyl and a related agent, TCH346, in subnanomolar concentrations, prevent S-nitrosylation of GAPDH, the binding of GAPDH to Siah, and nuclear translocation of GAPDH. In mice treated with the dopamine neuronal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), low doses of deprenyl prevent binding of GAPDH and Siah1 in the dopamine-enriched corpus striatum.


Asunto(s)
Apoptosis/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Animales , Antiparkinsonianos/farmacología , Apoptosis/fisiología , Línea Celular , Gliceraldehído-3-Fosfato Deshidrogenasas/fisiología , Humanos , Técnicas In Vitro , Intoxicación por MPTP/patología , Intoxicación por MPTP/fisiopatología , Masculino , Ratones , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/prevención & control , Óxido Nítrico/metabolismo , Proteínas Nucleares/fisiología , Oxepinas/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/farmacología , Ubiquitina-Proteína Ligasas/fisiología
16.
Proc Natl Acad Sci U S A ; 103(9): 3405-9, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16492755

RESUMEN

The pathophysiology of Huntington's disease reflects actions of mutant Huntingtin (Htt) (mHtt) protein with polyglutamine repeats, whose N-terminal fragment translocates to the nucleus to elicit neurotoxicity. We establish that the nuclear translocation and associated cytotoxicity of mHtt reflect a ternary complex of mHtt with GAPDH and Siah1, a ubiquitin-E3-ligase. Overexpression of GAPDH or Siah1 enhances nuclear translocation of mHtt and cytotoxicity, whereas GAPDH mutants that cannot bind Siah1 prevent translocation. Depletion of GAPDH or Siah1 by RNA interference diminishes nuclear translocation of mHtt.


Asunto(s)
Núcleo Celular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular , Citoplasma/metabolismo , Regulación de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Humanos , Enfermedad de Huntington
17.
Cell ; 115(2): 139-50, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-14567912

RESUMEN

Nitric oxide (NO) inhibits vascular inflammation, but the molecular basis for its anti-inflammatory properties is unknown. We show that NO inhibits exocytosis of Weibel-Palade bodies, endothelial granules that mediate vascular inflammation and thrombosis, by regulating the activity of N-ethylmaleimide-sensitive factor (NSF). NO inhibits NSF disassembly of soluble NSF attachment protein receptor (SNARE) complexes by nitrosylating critical cysteine residues of NSF. NO may regulate exocytosis in a variety of physiological processes, including vascular inflammation, neurotransmission, thrombosis, and cytotoxic T lymphocyte cell killing.


Asunto(s)
Proteínas Portadoras/metabolismo , Exocitosis/fisiología , Óxido Nítrico/farmacología , Proteínas de Transporte Vesicular , Animales , Aorta/citología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Células Cultivadas , Cisteína/genética , Cisteína/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Exocitosis/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Proteínas Sensibles a N-Etilmaleimida , NG-Nitroarginina Metil Éster/farmacología , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Trombina/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Cuerpos de Weibel-Palade/efectos de los fármacos , Cuerpos de Weibel-Palade/metabolismo , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA