RESUMEN
Pickering emulsions are ultra-stable dispersions of two immiscible fluids stabilized by solid or microgel particles rather than molecular surfactants. Although their ultra-stability is a signature performance indicator, often such high stability hinders their demulsification, i.e., prevents the droplet coalescence that is needed for phase separation on demand, or release of the active ingredients encapsulated within droplets and/or to recover the particles themselves, which may be catalysts, for example. This review aims to provide theoretical and experimental insights on demulsification of Pickering emulsions, in particular identifying the mechanisms of particle dislodgment from the interface in biological and non-biological applications. Even though the adhesion of particles to the interface can appear irreversible, it is possible to detach particles via (1) alteration of particle wettability, and/or (2) particle dissolution, affecting the particle radius by introducing a range of physical conditions: pH, temperature, heat, shear, or magnetic fields; or via treatment with chemical/biochemical additives, including surfactants, enzymes, salts, or bacteria. Many of these changes ultimately influence the interfacial rheology of the particle-laden interface, which is sometimes underestimated. There is increasing momentum to create responsive Pickering particles such that they offer switchable wettability (demulsification and re-emulsification) when these conditions are changed. Demulsification via wettability alteration seems like the modus operandi whilst particle dissolution remains only partially explored, largely dominated by food digestion-related studies where Pickering particles are digested using gastrointestinal enzymes. Overall, this review aims to stimulate new thinking about the control of demulsification of Pickering emulsions for release of active ingredients associated with these ultra-stable emulsions.
RESUMEN
The interfacial activity of poly(N-isopropylacrylamide) (pNIPAM) nanoparticles in the absence and presence of an anionic surfactant (sodium dodecyl sulfate, SDS) was studied at a crude oil-water interface. Both species are interfacially active and can lower the interfacial tension, but when mixed together, the interfacial composition was found to depend on the aging time and total component concentration. With the total component concentration less than 0.005 wt %, the reduced interfacial tension by pNIPAM was greater than SDS; thus, pNIPAM has a greater affinity to partition at the crude oil-water interface. However, the lower molecular weight (smaller molecule) of SDS compared to pNIPAM meant that it rapidly partitioned at the oil-water interface. When mixed, the interfacial composition was more SDS-like for low total component concentrations (≤ 0.001 wt %), while above, the interfacial composition was more pNIPAM-like, similar to the single component response. Applying a weighted arithmetic mean approach, the surface-active contribution (%) could be approximated for each component, pNIPAM and SDS. Even though SDS rapidly partitioned at the oil-water interface, it was shown to be displaced by the pNIPAM nanoparticles, and for the highest total component concentration, pNIPAM nanoparticles were predominantly contributing to the reduced oil-water interfacial tension. These findings have implications for the design and performance of fluids that are used to enhance crude oil production from reservoirs, particularly highlighting the aging time and component concentration effects to modify interfacial tensions.
RESUMEN
The breath figure (BF) method employs condensation droplets as dynamic templates for patterning polymer films. In the classical approach, dropwise condensation and film solidification are simultaneously induced through solvent evaporation, leading to empirically derived patterns with limited predictability of the final design. Here we use the temporally arrested BF methodology, controlling condensation and polymerisation independently to create diverse BF patterns with varied pore size, arrangement and distribution. External temperature control enables us to further investigate and exploit the inherent reversibility of the phase change process that governs the pattern formation. We modulate the level of subcooling and superheating to achieve subsequent regimes of condensation and evaporation, permitting in situ regulation of the droplet growth and shrinkage kinetics. The full reversibility of the phase change processes joined with active photopolymerisation in the current approach thus allows arresting of predictable BF kinetics at intermediate stages, thereby accessing patterns with varied pore size and spacing for unchanged material properties and environmental conditions. This simultaneous active control over both the kinetics of phase change and polymer solidification offers affordable routes for the fabrication of diverse predictable porous surfaces; manufacture of monolithic hierarchical BF patterns are ultimately facilitated through the advanced control of the BF assembly using the method presented here.
RESUMEN
The internal dynamics during the axisymmetric coalescence of an initially static free droplet and a sessile droplet of the same fluid are studied using both laboratory experiments and numerical simulations. A high-speed camera captured internal flows from the side, visualized by adding a dye to the free droplet. The numerical simulations employ the volume of fluid method, with the Kistler dynamic contact angle model to capture substrate wettability, quantitatively validated against the image-processed experiments. It is shown that an internal jet can be formed when capillary waves reflected from the contact line create a small tip with high curvature on top of the coalesced droplet that propels fluid toward the substrate. Jet formation is found to depend on the substrate wettability, which influences capillary wave reflection; the importance of the advancing contact angle subordinated to that of the receding contact angle. It is systematically shown via regime maps that jet formation is enhanced by increasing the receding contact angle and by decreasing the droplet viscosity. Jets are seen at volume ratios very different from those accepted for free droplets, showing that a substrate with appropriate wettability can improve the efficiency of fluid mixing.
RESUMEN
In the current study, a novel stimuli-responsive hybrid polymer with aluminum hydroxide colloids incorporated into a cationic copolymer of N-isopropylacrylamide and N-[3-(dimethylamino)propyl]methacrylamide was synthesized to enhance the settling and filtration performance of fine clay suspensions. The conformation of the synthesized hybrid copolymer was shown to respond to changes in both temperature and pH. Compared with a cationic copolymer of similar structure without aluminum hydroxide colloids, settling and filtration rates were significantly enhanced using the hybrid copolymer, which is attributed to the synergy between the inorganic aluminum hydroxide cores and organic copolymer. While the ideal treatment protocol for the hybrid polymer involved the addition of the polymer at room temperature, followed by heating to 45 °C for enhanced settling and dewatering, the synergistic effect between colloidal cores and polymer also allowed the hybrid polymer to perform well when added at temperatures above the LCST, demonstrating the robustness of the hybrid polymer to the process environment. The ideal treatment protocol resulted in an optimal adsorption of polymer on clays before inducing a coil-globule transition to form large and dense flocs, resulting in a more porous filter cake.
Asunto(s)
Coloides , Polímeros , Adsorción , Suspensiones , TemperaturaRESUMEN
Soft sediments exhibit complex and varied deformation behavior during in situ bubble growth; however, the sediment microstructure is often neglected when predicting bubble networking or fracture propagation dynamics. This study considers three chemically similar Mg(OH)2-rich sediments, which differ slightly in their particle size distributions and morphologies but exhibit significant differences in their porosity, stiffness, and pore throat dimensions at equivalent yield strengths. At low yield strengths, microstructure greatly influenced the size distribution and connectivity of spherical bubble populations, with narrow sedimentary pore throats promoting coarser bubbles with diminished connectivity. Increased connectivity of the bubble population appeared highly significant in limiting bed expansion, either by establishing pathways for gas release or by dissipating excess internal bubble pressure, thereby diminishing further growth. During in situ gas generation, each sediment demonstrated a critical fracture strength, which demarcated the populations with high void fractions (0.27 < ν < 0.4) of near-spherical bubbles from a fracturing regime supporting reduced void fractions (ν ≈ 0.15) of high aspect ratio cracks. However, critical fracture strengths varied significantly (in the 60-1000 Pa range) between sediments, with coarser-grained and higher porosity sediments promoting fracture at lower strengths. Fracture propagation greatly enhanced the connectivity and diminished the tortuosity of the void networks, thereby augmenting the continuous gas release flux.
Asunto(s)
Sedimentos Geológicos , Aire , Sedimentos Geológicos/química , PorosidadRESUMEN
The current study examined the foaming behavior of poly(vinylpyrrolidone) (PVP)-silica composite nanoparticles. Individually, the two components, PVP and silica nanoparticles, exhibited very little potential to partition at the air-water interface, and as such, stable foams could not be generated. In contrast, combining the two components to form silica-PVP core-shell nanocomposites led to good "foamability" and long-term foam stability. Addition of an electrolyte (Na2SO4) was shown to have a marked effect on the foam stability. By varying the concentration of electrolyte between 0 and 0.55 M, three regions of foam stability were observed: rapid foam collapse at low electrolyte concentrations, delayed foam collapse at intermediate concentrations, and long-term stability (â¼10 days) at the highest electrolyte concentration. The observed transitions in foam stability were better understood by studying the microstructure and physical and mechanical properties of the particle-laden interface. For rapidly collapsing foams the nanocomposite particles were weakly retained at the air-water interface. The interfaces in this case were characterized as being "liquid-like" and the foams collapsed within 100 min. At an intermediate electrolyte concentration (0.1 M), delayed foam collapse over â¼16 h was observed. The particle-laden interface was shown to be pseudo-solid-like as measured under shear and compression. The increased interfacial rigidity was attributed to adhesion between interpenetrating polymer layers. For the most stable foam (prepared in 0.55 M Na2SO4), the ratio of the viscoelastic moduli, G'/Gâ³, was found to be equal to â¼3, confirming a strongly elastic interfacial layer. Using optical microscopy, enhanced foam stability was assessed and attributed to a change in the mechanism of foam collapse. Bubble-bubble coalescence was found to be significantly retarded by the aggregation of nanocomposite particles, with the long-term destabilization being recognized to result from bubble coarsening. For rapidly destabilizing foams, the contribution from bubble-bubble coalescence was shown to be more significant.
RESUMEN
Recent studies have successfully measured surface forces using atomic force microscope (AFM) and modeled surface deformations using the Stokes-Reynolds-Young-Laplace (SRYL) equations for particle-droplet, particle-bubble, droplet-droplet, and bubble-bubble systems in various solutions. The current work focuses on interactions between spherical silica particles and a viscoelastic interface of water droplets in crude oil. The self-assembly of surface active natural polyaromatic molecules (NPAMs) at the oil-water interface has previously been shown to change a viscous dominant oil-water interface to an elastic dominant interface upon aging, due to gradual formation of rigid interfacial networks. AFM was used to measure the interactions between a small silica sphere (D ≈ 8 µm) and a deformable water droplet (D ≈ 70 µm), which exhibits time-dependent interfacial viscoelasticity in NPAM solutions. Unlike the systems studied previously, the measured deformation shown as a repulsive force over the region of constant compliance could not be modeled adequately by the conventional SRYL equations which are applicable only to purely Laplacian interfaces. As the water droplet ages in NPAM solutions, a rigid "skin" forms at the oil-water interface, with the interface exhibiting increased elasticity. Over a short aging period (up to 15 min in NPAM-in-toluene solution), interfacial deformation is well predicted by the SRYL model. However, upon further exposure to the NPAM solution, droplet deformation is overpredicted by the model. Physical properties of this mechanical barrier as a function of interfacial aging were further investigated by measuring interfacial tension, dilatational rheology, and interfacial "crumpling" (non-smooth, non-Laplacian interface) upon droplet volume reduction. By introducing a viscoelasticity parameter to account for interfacial stiffening and using experimentally determined elasticity, we are able to correct this discrepancy and predict droplet deformation under AFM cantilever compression. This parameter appears to be important for modeling non-Laplacian systems of significant viscoelastic contributions, such as biological cell membranes or polymer blends.
RESUMEN
The yielding behavior of silica nanoparticles partitioned at an air-aqueous interface is reported. Linear viscoelasticity of the particle-laden interface can be retrieved via a time-dependent and electrolyte-dependent superposition, and the applicability of the "soft glassy rheology" (SGR) model is confirmed. With increasing electrolyte concentration (φelect) in the aqueous subphase, a nonergodic state is achieved with particle dynamics arrested first from attraction induced bonding bridges and then from the cage effect of particle jamming, manifesting in a two-step yielding process under large amplitude oscillation strain (LAOS). The Lissajous curves disclose a shear-induced in-cage particle redisplacement within oscillation cycles between the two yielding steps, exhibiting a "strain softening" transitioning to "strain stiffening" as the interparticle attraction increases. By varying φelect and the particle spreading concentration, φSiO2, a variety of phase transitions from fluid- to gel- and glass-like can be unified to construct a state diagram mapping the yielding behaviors from one-step to two-step before finally exhibiting one-step yielding at high φelect and φSiO2.
RESUMEN
Two distinct uniform hybrid particles, with similar hydrodynamic diameters and comparable zeta potentials, were prepared by copolymerizing N-isopropylacrylamide (NIPAM) and styrene. These particles differed in their styrene to NIPAM (S/N) mass ratios of 1 and 8 and are referred to as S/N 1 and S/N 8, respectively. Particle S/N 1 exhibited a typical behavior of soft particles; that is, the particles shrank in bulk aqueous solutions when the temperature was increased. As a result, S/N 1 particles were interfacially active. In contrast, particle S/N 8 appeared to be rigid in response to temperature changes. In this case, the particles showed a negligible interfacial activity. Interfacial shear rheology tests revealed the increased rigidity of the particle-stabilized film formed at the heptane-water interface by S/N 1 than S/N 8 particles. As a result, S/N 1 particles were shown to be better emulsion stabilizers and emulsify a larger amount of heptane, as compared with S/N 8 particles. The current investigation confirmed a better performance of emulsion stabilization by soft particles (S/N 1) than by rigid particles (S/N 8), reinforcing the importance of controlling softness or deformability of particles for the purpose of stabilizing emulsions.
RESUMEN
Physical properties of interfacial layers formed at the xylene-water interface by the adsorption of a polyaromatic organic compound, N-(1-hexylheptyl)-N'-(5-carbonylicpentyl) perylene-3,4,9,10-tetracarboxylic bisimide (in brief, C5Pe), were studied systematically. The deprotonation of the carboxylic group of C5Pe at alkaline pH made it highly interfacially active, significantly reducing the xylene-water interfacial tension. Thin liquid film experiments showed a continuous buildup of heterogeneous C5Pe interfacial layers at the xylene-water interfaces, which contributed to the formation of stable W/O emulsions. Continual accumulation and rearrangement of C5Pe aggregates at the xylene-water interface to form a thick layer was confirmed by in situ Brewster angle microscopy (BAM) and atomic force microscopy (AFM). The rheology measurement of the interfacial layer by double-wall ring interfacial rheometry under oscillatory shear showed that the interfacial layers formed from C5Pe solutions of high concentrations were substantially more elastic and rigid. The presence of elastically dominant interfacial layers of C5Pe led to the formation of stable water-in-xylene emulsions.
Asunto(s)
Imidas/química , Perileno/análogos & derivados , Agua/química , Xilenos/química , Emulsiones , Concentración de Iones de Hidrógeno , Estructura Molecular , Aceites/química , Tamaño de la Partícula , Perileno/química , Reología , Tensión SuperficialRESUMEN
The adsorption process of asphaltene onto molecularly smooth mica surfaces from toluene solutions of various concentrations (0.01-1 wt %) was studied using a surface forces apparatus (SFA). Adsorption of asphaltenes onto mica was found to be highly dependent on adsorption time and asphaltene concentration of the solution. The adsorption of asphaltenes led to an attractive bridging force between the mica surfaces in asphaltene solution. The adsorption process was identified as being controlled by the diffusion of asphaltenes from the bulk solution to the mica surface with a diffusion coefficient on the order of 10(-10) m(2)/s at room temperature, depending on the asphaltene bulk concentration. This diffusion coefficient corresponds to a hydrodynamic molecular radius of approximately 0.5 nm, indicating that asphaltene diffuses to mica surfaces as individual molecules at very low concentration (e.g., 0.01 wt %). Atomic force microscopy images of the adsorbed asphaltenes on mica support the results of the SFA force measurements. The results from the SFA force measurements provide valuable insights into the molecular interactions (e.g., steric repulsion and bridging attraction as a function of distance) of asphaltenes in organic media and hence their roles in crude oil and bitumen production.
Asunto(s)
Silicatos de Aluminio/química , Hidrocarburos Policíclicos Aromáticos/química , Tolueno/química , Adsorción , Difusión , Tamaño de la Partícula , Solventes/química , Propiedades de SuperficieRESUMEN
Adsorption of asphaltenes at the water-oil interface contributes to the stability of petroleum emulsions by forming a networked film that can hinder drop-drop coalescence. The interfacial microstructure can either be liquid-like or solid-like, depending on (i) initial bulk concentration of asphaltenes, (ii) interfacial aging time, and (iii) solvent aromaticity. Two techniques--interfacial shear rheology and integrated thin film drainage apparatus--provided equivalent interface aging conditions, enabling direct correlation of the interfacial rheology and droplet stability. The shear rheological properties of the asphaltene film were found to be critical to the stability of contacting drops. With a viscous dominant interfacial microstructure, the coalescence time for two drops in intimate contact was rapid, on the order of seconds. However, as the elastic contribution develops and the film microstructure begins to be dominated by elasticity, the two drops in contact do not coalescence. Such step-change transition in coalescence is thought to be related to the high shear yield stress (~10(4) Pa), which is a function of the film shear yield point and the film thickness (as measured by quartz crystal microbalance), and the increased elastic stiffness of the film that prevents mobility and rupture of the asphaltene film, which when in a solid-like state provides an energy barrier against drop coalescence.
RESUMEN
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
RESUMEN
Waste PCBs the core of e-waste is rich in copper, tin, zinc, iron, and nickel. Leaching base metals from PCB used to be done in toxic, corrosive acidic/alkali mediums. In this work, an environmentally friendly method for leaching metals from thermally treated PCBs (TPCBs) of mobile phones was proposed using choline chloride based deep eutectic solvents (DES). DES selectivity and solubility of metals from metal oxides were the main screening criteria. FA-ChCl had the maximum solubility of Cu, Fe, and Ni, while Urea-ChCl had high Zn selectivity and solubility. Oxalic acid has high selectivity for Sn. FA-ChCl extracted Cu and Fe best at 16â h, 100 °C, and 1/30â g/mL. Urea-ChCl extracted Zn (90.4±2.9 %) from TPCBs at 100 °C, 21â h, 1/20â g/mL, and 400â rpm. Oxalic acid (1â M) removed 92.3±2.1 % Sn from TPCBs in 1â h at 80 °C and 1/20â g/mL. The shrinking core model-based kinetic investigation of FA-ChCl for Cu extraction showed a diffusion-controlled process. The proposed method is greener than mineral acids utilized for metal extraction.
RESUMEN
Lead (Pb2+) is a ubiquitous pollutant. Membrane filtration represents one of the most common water treatment methods, but nanofiltration and ultrafiltration require high transmembrane pressure, while microfiltration has larger pore sizes than ions, making them unfavorable for direct ion removal at low cost. Selective and direct separation of Pb2+ via membrane filtration at high efficiency without sacrificing the flux of clean water still remains challenging. Herein, inspired by the Pb2+-tolerable oleander that enriches and prevents Pb2+ in roots from permeating the plant body, a smart Pb2+-adsorptive filtration membrane with a temperature- and ion-tunable water gate was prepared by loading dual-responsive poly(N-isopropylacrylamido-co-acrylamido-benzo-18-crown-6) (PNB-5-20) microgels onto a commercial membrane. The PNB-5-20 microgel exhibits pronounced temperature-responsive swelling/deswelling (hydrodynamic diameter, 650-330 nm) with a volume phase transition temperature (VPTT) at â¼33 °C. Moreover, the microgel shows a high Pb2+-adsorption capacity (qmax, 85.4 mg/g) and good selectivity (distribution coefficient Kd â¼ 1000 mL/g) thanks to its complexation with the crown ether, as well as good Pb2+ responsiveness, having the VPTT positively shifted to 40 °C in the presence of Pb2+ with enhanced swelling behaviors. Functionalized with PNB-5-20, the smart membrane integrates Pb2+ detection, adsorption, and tunable water drainage in a single device. The membrane selectively recognizes Pb2+ in the polluted water with the gates in membrane pores switching from "open" to "closed", intercepting and adsorbing Pb2+ with water permeation reduced. Once purified, the gates can be "re-opened" by increasing the temperature. Construction of such an intelligent membrane filtration device with a tunable water gate and excellent Pb2+ recognition and adsorption performance will greatly simplify the remediation of Pb2+-polluted water.
RESUMEN
HYPOTHESIS: Droplet spreading on heterogeneous (chemical/structural) surfaces has revealed local disturbances that affect the advancing contact line. With droplet dewetting being less studied, we hypothesize that a receding droplet can be perturbed by localized heterogeneity which leads to irregular and discontinuous dewetting of the substrate. EXPERIMENTS: The sessile drop method was used to study droplet dewetting at a wettability boundary. One-half of a hydrophilic surface was hydrophobically modified with either i) methyloctyldichlorosilane or ii) clustered macromolecules. A Lattice Boltzmann method (LBM) simulation was also developed to determine the effect of contact angle hysteresis and boundary conditions on the droplet dynamics. FINDINGS: The two surface treatments were optimized to produce comparable water wetting characteristics. With a negative Gibbs free energy on the hydrophilic-half, the oil droplet receded to the hydrophobic-half. On the silanized surface, the droplet was pinned and the resultant droplet shape was a distorted spherical cap, having receded uniformly on the unmodified surface. Modifying the surface with clustered macromolecules, the droplet receded slightly to form a spherical cap. However, droplet recession was non-uniform and daughter droplets formed near the wettability boundary. The LBM simulation revealed that daughter droplets formed when θR > 164°, with the final droplet shape accurately described by imposing a diffuse wettability boundary condition.
RESUMEN
To meet the increasing global demand for energy, better recovery of crude oil from reservoirs must be achieved using methods that are economical and environmentally benign. Here, we have developed a nanofluid of amphiphilic clay-based Janus nanosheets via a facile and scalable method that provides potential to enhance oil recovery. With the aid of dimethyl sulfoxide (DMSO) intercalation and ultrasonication, kaolinite was exfoliated into nanosheets (KaolNS) before being grafted with 3-methacryloxypropyl-triemethoxysilane (KH570) on the Alumina Octahedral Sheet at 40 and 70 °C to form amphiphilic Janus nanosheets (i.e., KaolKH@40 and KaolKH@70). The amphiphilicity and Janus nature of the KaolKH nanosheets have been well demonstrated, with distinct wettability obtained on two sides of the nanosheets, and the KaolKH@70 was more amphiphilic than the KaolKH@40. Upon preparing Pickering emulsion in a hydrophilic glass tube, the KaolKH@40 preferentially stabilized emulsions, while the KaolNS and KaolKH@70 tended to form an observable and high-strength elastic planar interfacial film at the oil-water interface as well as films climbing along the tube's surface, which were supposed to be the result of emulsion instability and the strong adherence of Janus nanosheets towards tube's surface. Subsequently, the KaolKH was grafted with poly(N-Isopropylacrylamide) (PNIPAAm), and the prepared thermo-responsive Janus nanosheets demonstrated a reversible transformation between stable emulsion and the observable interfacial films. Finally, when the samples were subjected to core flooding tests, the nanofluid containing 0.01 wt% KaolKH@40 that formed stable emulsions showed an enhanced oil recovery (EOR) rate of 22.37%, outperforming the other nanofluids that formed observable films (an EOR rate ~13%), showcasing the superiority of Pickering emulsions from interfacial films. This work demonstrates that KH-570-modified amphiphilic clay-based Janus nanosheets have the potential to be used to improve oil recovery, especially when it is able to form stable Pickering emulsions.
RESUMEN
HYPOTHESIS: Dynamics of polymer-coated silica composite nanoparticles (CPs) during bubble coarsening is highly dominated by the behaviour of the polymer layer, while in-situ particle aggregation would lead to accelerated bubble coalescence. EXPERIMENTS: CPs-stabilized foams were prepared in 0.1 M and 0.55 M Na2SO4 solution, referring to the 0.1 M and 0.55 M foam/bubble respectively. The 0.1 M to 0.55 M transition foam was also prepared. High resolution Cryo-SEM was originally used to investigate the CPs behaviour at the bubble-stabilizing interface during bubble coarsening and accelerated coalescence. FINDINGS: The 0.1 M bubble-stabilizing interface buckles in uniaxial compression due to coarsening, with the CPs being observed to desorb from the interface. While the CPs were visualized to rearrange into crumpled particle multi-layers surrounding the shrinking 0.55 M bubbles, due to the adhesion between interpenetrating polymer chains and the unique lubrication effect of the PVP layers. The 0.1 M to 0.55 M transition foaming behaviour was also studied. Cracks and voids were observed at interfaces surrounding the transition bubbles driven by in-situ particle aggregation, resulting in accelerated bubble coalescence during the transition process.
RESUMEN
Asphaltenes constitute high molecular weight constituents of crude oils that are insoluble in n-heptane and soluble in toluene. They contribute to the stabilization of the water-in-oil emulsions formed during crude oil recovery and hinder drop-drop coalescence. As a result, asphaltenes unfavorably impact water-oil separation processes and consequently oil production rates. In view of this there is a need to better understand the physicochemical effects of asphaltenes at water-oil interfaces. This study elucidates aspects of these effects based on new data on the interfacial tension in such systems from pendant drop experiments, supported by results from nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) studies. The pendant drop experiments using different asphaltene concentrations (mass fractions) and solvent viscosities indicate that the interfacial tension reduction kinetics at short times are controlled by bulk diffusion of the fraction of asphaltenes present as monomer. At low mass fractions much of the asphaltenes appear to be present as monomers, but at mass fractions greater than about 80 ppm they appear to aggregate into larger structures, a finding consistent with the NMR and DLS results. At longer times interfacial tension reduction kinetics are slower and no longer diffusion controlled. To investigate the controlling mechanisms at this later stage the pendant drop experiment was made to function in a fashion similar to a Langmuir trough with interfacial tension being measured during expansion of a droplet aged in various conditions. The interfacial tension was observed to depend on surface coverage and not on time. All observations indicate the later stage transition is to an adsorption barrier-controlled regime rather than to a conformational relaxation regime.