Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2214035120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848574

RESUMEN

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Regiones Antárticas , Efectos Antropogénicos , Océano Índico
2.
Proc Biol Sci ; 291(2018): 20240314, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471549

RESUMEN

North Atlantic right whales are Critically Endangered and declining, with entanglements in fishing gear a key contributor to their decline. Entanglement events can result in lethal and sub-lethal (i.e. increased energetic demands and reduced foraging ability) impacts, with the latter influencing critical life-history states, such as reproduction. Using a multi-event framework, we developed a Bayesian mark-recapture model to investigate the influence of entanglement severity on survival and recruitment for female right whales. We used information from 199 known-aged females sighted between 1977 and 2018, combined with known entanglements of varying severity that were classified as minor, moderate or severe. Severe entanglements resulted in an average decline in survival of 27% for experienced non-breeders, 9% for breeders and 26% for pre-breeding females compared with other entanglements and unentangled individuals. Surviving individuals with severe entanglements had low transitional probabilities to breeders, but surprisingly, individuals with minor entanglements had the lowest transitional probabilities, contrary to expectations underpinning current management actions. Management actions are needed to address the lethal and sub-lethal impacts of entanglements, regardless of severity classification.


Asunto(s)
Reproducción , Ballenas , Humanos , Animales , Femenino , Anciano , Teorema de Bayes , Cruzamiento , Océano Atlántico
3.
Oecologia ; 204(4): 815-832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568471

RESUMEN

Ecological theory predicts niche partitioning between high-level predators living in sympatry as a mechanism to minimise the selective pressure of competition. Accordingly, male Australian fur seals Arctocephalus pusillus doriferus and New Zealand fur seals A. forsteri that live in sympatry should exhibit partitioning in their broad niches (in habitat and trophic dimensions) in order to coexist. However, at the northern end of their distributions in Australia, both are recolonising their historic range after a long absence due to over-exploitation, and their small population sizes suggest competition should be weak and may allow overlap in niche space. We found some niche overlap, yet clear partitioning in diet trophic level (δ15N values from vibrissae), spatial niche space (horizontal and vertical telemetry data) and circadian activity patterns (timing of dives) between males of each species, suggesting competition may remain an active driver of niche partitioning amongst individuals even in small, peripheral populations. Consistent with individual specialisation theory, broad niches of populations were associated with high levels of individual specialisation for both species, despite putative low competition. Specialists in isotopic space were not necessarily specialists in spatial niche space, further emphasising their diverse individual strategies for niche partitioning. Males of each species displayed distinct foraging modes, with Australian fur seals primarily benthic and New Zealand fur seals primarily epipelagic, though unexpectedly high individual specialisation for New Zealand fur seals might suggest marginal populations provide exceptions to the pattern generally observed amongst other fur seals.


Asunto(s)
Ecosistema , Lobos Marinos , Animales , Lobos Marinos/fisiología , Masculino , Simpatría , Australia , Nueva Zelanda , Dieta , Ritmo Circadiano , Isótopos de Nitrógeno/análisis
4.
J Environ Manage ; 368: 122116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116808

RESUMEN

Marine protected areas (MPAs) are a commonly used management tool to safeguard marine life from anthropogenic impacts, yet their efficacy often remains untested. Evaluating how highly dynamic marine species use static MPAs is challenging but becoming more feasible with the advancement of telemetry data. Here, we focus on southern right whales (Eubalaena australis, SRWs) in the waters off Aotearoa/New Zealand, which declined from 30,000 whales to fewer than 40 mature females due to whaling. Now numbering in the low thousands, the key socializing and nursery areas for this population in the remote subantarctic islands are under the protection of different types of MPAs. However, the effectiveness of these MPAs in encompassing important whale habitat and protecting the whales from vessel traffic has not been investigated. To address this, we analyzed telemetry data from 29 SRWs tagged at the Auckland Islands between 2009 and 2022. We identified two previously unknown and currently unprotected areas that were used by the whales for important behaviors such as foraging, socializing, or resting. Additionally, by combining whale locations and vessel tracking data (2020-2022) during peak breeding period (June to October), we found high spatiotemporal overlap between whales and vessels within several MPAs, suggesting the whales could still be vulnerable to multiple anthropogenic stressors even when within areas designated for protection. Our results identify areas to be prioritized for future monitoring and investigation to support the ongoing recovery of this SRW population, as well as highlight the overarching importance of assessing MPA effectiveness post-implementation, especially in a changing climate.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Conservación de los Recursos Naturales/métodos , Nueva Zelanda , Migración Animal , Ballenas , Femenino
5.
Am Nat ; 201(4): 586-602, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958006

RESUMEN

AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species. We compiled movement data from 1,596 individuals across 79 taxa collected using a continental passive acoustic telemetry network of acoustic receivers to assess allometric scaling of activity space. We found that ectothermic marine taxa do exhibit allometric scaling for activity space, with an overall scaling exponent of 0.64. However, body mass alone explained only 35% of the variation, with the remaining variation best explained by trophic position for teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponents among teleost fish species (0.07) than sharks (0.96), rays (0.55), and marine reptiles (0.57). The allometric scaling relationship and scaling exponents for the marine taxonomic groups examined were lower than those reported from studies that had collated both marine and terrestrial species data derived using various tracking methods. We propose that these disparities arise because previous work integrated summarized data across many studies that used differing methods for collecting and quantifying activity space, introducing considerable uncertainty into slope estimates. Our findings highlight the benefit of using large-scale, coordinated animal biotelemetry networks to address cross-taxa evolutionary and ecological questions.


Asunto(s)
Organismos Acuáticos , Peces , Animales , Fenómenos de Retorno al Lugar Habitual
6.
Proc Biol Sci ; 289(1967): 20212452, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35078353

RESUMEN

Antarctic polynyas are persistent open water areas which enable early and large seasonal phytoplankton blooms. This high primary productivity, boosted by iron supply from coastal glaciers, attracts organisms from all trophic levels to form a rich and diverse community. How the ecological benefit of polynya productivity is translated to the highest trophic levels remains poorly resolved. We studied 119 southern elephant seals feeding over the Antarctic shelf and demonstrated that: (i) 96% of seals foraging here used polynyas, with individuals spending on average 62% of their time there; (ii) the seals exhibited more area-restricted search behaviour when in polynyas; and (iii) these seals gained more energy (indicated by increased buoyancy from greater fat stores) when inside polynyas. This higher-quality foraging existed even when ice was not present in the study area, indicating that these are important and predictable foraging grounds year-round. Despite these energetic advantages from using polynyas, not all the seals used them extensively. Factors other than food supply may influence an individual's choice in their use of feeding grounds, such as exposure to predation or the probability of being able to return to distant sub-Antarctic breeding sites.


Asunto(s)
Phocidae , Animales , Regiones Antárticas , Cubierta de Hielo , Conducta Predatoria
7.
Anim Cogn ; 25(5): 1019-1028, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35708854

RESUMEN

Communication is the process by which one emitter conveys information to one or several receivers to induce a response (behavioral or physiological) by the receiver. Communication plays a major role in various biological functions and may involve signals and cues from different sensory modalities. Traditionally, investigations of animal communication focused on a single sensory modality, yet communication is often multimodal. As these different processes may be quite complex and therefore difficult to disentangle, one approach is to first study each sensorial modality separately. With this refined understanding of individual senses, revealing how they interact becomes possible as the characteristics and properties of each modality can be accounted for, making a multimodal approach feasible. Using this framework, researchers undertook systematic, experimental investigations on mother-pup recognition processes in a colonial pinniped species, the Australian sea lion Neophoca cinerea. The research first assessed the abilities of mothers and pups to identify each other by their voice using playback experiments. Second, they assessed whether visual cues are used by both mothers and pups to distinguish them from conspecifics, and/or whether females discriminate the odor of their filial pup from those from non-filial pups. Finally, to understand if the information transmitted by different sensory modalities is analyzed synergistically or if there is a hierarchy among the sensory modalities, experiments were performed involving different sensory cues simultaneously. These findings are discussed with regards to the active space of each sensory cue, and of the potential enhancements that may arise by assessing information from different modalities.


Asunto(s)
Leones Marinos , Animales , Femenino , Australia , Señales (Psicología) , Madres , Reconocimiento en Psicología , Leones Marinos/fisiología
8.
Rapid Commun Mass Spectrom ; 36(18): e9346, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35737589

RESUMEN

RATIONALE: The use of sulfur isotopes to study trophic ecology in marine ecosystems has increased in the past decade. Unlike other commonly used isotopes (e.g., carbon), sulfur can better discriminate benthic and pelagic productivity. However, how lipid extraction affects sulfur isotopic values has not been assessed, despite its frequent use to remove lipid effects on δ13 C values. METHODS: We used white muscle and liver samples from two species of sharks and skin samples from two species of pinnipeds (sea lion and fur seal) to assess the effects of lipid extraction on stable isotope values for δ34 S, δ13 C, and δ15 N. Isotopic values were determined using a continuous flow-isotope ratio mass spectrometer coupled to an elemental analyzer. RESULTS: Lipid extraction significantly decreased δ34 S values in shark tissues, more so for liver than muscle (-4.6 ± 0.9‰ vs -0.8 ± 0.3‰, average change), with nearly no change in their standard deviations. Lipid extraction did not affect δ34 S values from pinniped skin samples (0.2 ± 0.8‰, average change). After lipid extraction, consistent increases in δ13 C values (0.2‰-7.3‰) were detected as expected, especially in tissue with high lipid content (C:N >4). After lipid extraction, significant increases in δ15 N values (0.5‰-1.4‰) were found in shark muscle and liver tissues. For pinniped skin samples, δ15 N values were not significantly lower after lipid extraction (-0.4‰ to -0.1‰). CONCLUSIONS: Lipid extraction did not have a strong impact on δ34 S values of shark muscle and pinniped skin (≤1‰). However, our results suggest it is essential to consider the effects of lipid extraction when interpreting results from δ34 S values of shark liver tissue, as they significantly depleted values relative to bulk tissue (~5‰). This may reflect selective removal of sulfolipids and glutathione present in higher concentrations in the liver than in muscle and skin and requires further investigation.


Asunto(s)
Ecosistema , Tiburones , Animales , Isótopos de Carbono/análisis , Lípidos , Isótopos de Nitrógeno/análisis , Azufre
9.
Oecologia ; 198(1): 111-124, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34787703

RESUMEN

Globally, marine animal distributions are shifting in response to a changing climate. These shifts are usually considered at the species level, but individuals are likely to differ in how they respond to the changing conditions. Here, we investigate how movement behaviour and, therefore, redistribution, would differ by sex and maturation class in a wide-ranging marine predator. We tracked 115 tiger sharks (Galeocerdo cuvier) from 2002 to 2020 and forecast class-specific distributions through to 2030, including environmental factors and predicted occurrence of potential prey. Generalised Linear and Additive Models revealed that water temperature change, particularly at higher latitudes, was the factor most associated with shark movements. Females dispersed southwards during periods of warming temperatures, and while juvenile females preferred a narrow thermal range between 22 and 23 °C, adult female and juvenile male presence was correlated with either lower (< 22 °C) or higher (> 23 °C) temperatures. During La Niña, sharks moved towards higher latitudes and used shallower isobaths. Inclusion of predicted distribution of their putative prey significantly improved projections of suitable habitats for all shark classes, compared to simpler models using temperature alone. Tiger shark range off the east coast of Australia is predicted to extend ~ 3.5° south towards the east coast of Tasmania, particularly for juvenile males. Our framework highlights the importance of combining long-term movement data with multi-factor habitat projections to identify heterogeneity within species when predicting consequences of climate change. Recognising intraspecific variability will improve conservation and management strategies and help anticipate broader ecosystem consequences of species redistribution due to ocean warming.


Asunto(s)
Cambio Climático , Tiburones , Distribución Animal , Animales , Ecosistema , Femenino , Humanos , Masculino , Temperatura
10.
J Fish Biol ; 101(4): 1033-1046, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35848707

RESUMEN

Teeth are an integral component of feeding ecology, with a clear link between tooth morphology and diet, as without suitable dentition prey cannot be captured nor broken down for consumption. Bull sharks, Carcharhinus leucas, undergo an ontogenetic niche shift from freshwater to marine habitats, which raises the question: does tooth morphology change with ontogeny? Tooth shape, surface area and thickness were measured using both morphometrics and elliptic Fourier analysis to determine if morphology varied with position in the jaw and if there was an ontogenetic change concordant with this niche shift. Significant ontogenetic differences in tooth morphology as a function of position in the jaw and shark total length were found, with upper and lower jaws of bull sharks presenting two different tooth morphologies. Tooth shape and thickness fell into two groupings, anterior and posterior, in both the upper and lower jaws. Tooth surface area, however, indicated three groupings, mesial, intermediate and distal, in both the upper and lower jaws. While tooth morphology changed significantly with size, showing an inflection at sharks of 135 cm total length, each morphological aspect retained the same tooth groupings throughout. These ontogenetic differences in tooth morphologies reflect tooth strength, prey handling and heterodonty.


Asunto(s)
Tiburones , Diente , Animales , Ecosistema , Maxilares/anatomía & histología , Tiburones/anatomía & histología , Diente/anatomía & histología , Dieta
11.
Oecologia ; 196(3): 891-904, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34173892

RESUMEN

Individual specialization, which describes whether populations are comprised of dietary generalists or specialists, has profound ecological and evolutionary implications. However, few studies have quantified individual specialization within and between sympatric species that are functionally similar but have different foraging modes. We assessed the relationship between individual specialization, isotopic niche metrics and foraging behaviour of two marine predators with contrasting foraging modes: pelagic foraging female South American fur seals (Arctocephalus australis) and benthic foraging female southern sea lions (Otaria byronia). Stable isotope analysis of carbon and nitrogen was conducted along the length of adult female vibrissae to determine isotopic niche metrics and the degree of individual specialization. Vibrissae integrated time ranged between 1.1 and 5.5 years, depending on vibrissae length. We found limited overlap in dietary niche-space. Broader population niche sizes were associated with higher degrees of individual specialization, while narrower population niches with lower degrees of individual specialization. The degree of individual specialization was influenced by pelagic and benthic foraging modes. Specifically, South American fur seals, foraging in dynamic pelagic environments with abundant but similar prey, comprised specialist populations composed of generalist individuals. In contrast, benthic southern sea lions foraging in habitats with diverse but less abundant prey had more generalist populations composed of highly specialized individuals. We hypothesize that differences in specialization within and between populations were related to prey availability and habitat differences. Our study supports growing body of literature highlighting that individual specialization is a critical factor in shaping the ecological niche of higher marine predators.


Asunto(s)
Ecosistema , Lobos Marinos , Animales , Dieta , Femenino , Humanos , Especialización , Simpatría
12.
Biol Conserv ; 256: 108995, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34580542

RESUMEN

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

13.
Chem Senses ; 44(3): 205-214, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30799500

RESUMEN

Recognition of individuals or classes of individuals plays an important role in the communication systems of many mammals. The ability of otariid (i.e., fur seal and sea lion) females to locate and identify their offspring in colonies after returning from regular foraging trips is essential to successful pup rearing. It has been shown that olfaction is used to confirm the identity of the pup by the mother when they reunite, yet the processes by which this chemical recognition occurs remain unclear. Using gas chromatography-mass spectrometry, we examined chemical profiles of integumentary and glandular secretions/excretions from pre- and post-molt Australian sea lion pups (Neophoca cinerea) and compared fur and swab samples to assess data collection methods. Multivariate statistics were applied to assess differences in chemical composition between body regions and sexes. We found differences among secretions from various body regions, driven by the distinctiveness of the oral odor mixture. The fine-scale trends in pre- and post-molt pups seem to differ due to changes in the behavior of pups and consequent decrease in the transfer of compounds among adjacent body regions in older pups. Volatile compounds from exocrine substrates were not distinct for different sexes. We also show that swab samples provide better data for exploring social olfaction than fur samples for this species. Obtaining fundamental chemical information, in this case chemical profiles of animals, and discerning differences in chemical composition is an important step toward fully exploring the intricacies of mother-offspring olfactory recognition and its underlying processes.


Asunto(s)
Odorantes/análisis , Glándulas Odoríferas/química , Animales , Australia , Femenino , Cromatografía de Gases y Espectrometría de Masas , Análisis Multivariante , Leones Marinos
15.
Proc Biol Sci ; 285(1883)2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30051866

RESUMEN

Foraging site fidelity allows animals to increase their efficiency by returning to profitable feeding areas. However, the mechanisms underpinning why animals 'stay' or 'switch' sites have rarely been investigated. Here, we explore how habitat quality and prior prey capture experience influence short-term site fidelity by the little penguin (Eudyptula minor). Using 88 consecutive foraging trips by 20 brooding penguins, we found that site fidelity was higher after foraging trips where environmental conditions were favourable, and after trips where prey capture success was high. When penguins exhibited lower site fidelity, the number of prey captures relative to the previous trip increased, suggesting that switches in foraging location were an adaptive strategy in response to low prey capture rates. Penguins foraged closer to where other penguins foraged on the same day than they did to the location of their own previous foraging site, and caught more prey when they foraged close together. This suggests that penguins aggregated flexibly when prey was abundant and accessible. Our results illustrate how foraging predators can integrate information about prior experience with contemporary information such as social cues. This gives insight into how animals combine information adaptively to exploit changing prey distribution in a dynamic environment.


Asunto(s)
Ecosistema , Conducta Predatoria , Spheniscidae/fisiología , Animales , Nueva Gales del Sur
16.
Anim Cogn ; 21(2): 235-243, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29352457

RESUMEN

Vocal characteristics can vary among and within populations. In species with geographic variation in the structure of vocalizations, individuals may have the ability to discriminate between calls from local and non-local individuals. The ability to distinguish differences in acoustic signals is likely to have a significant influence on the outcome of social interactions between individuals, including potentially mate selection and breeding success. Pinnipeds (seals, fur seals, sea lions and walruses) are highly vocal yet the Australian sea lion (Neophoca cinerea) is the only eared seal known to show geographic vocal variation in male barks. Barks are produced in many social interactions and encode sufficient information for both individual and colony identity to be discriminable. Yet until now, whether males could themselves discriminate these bark differences was unclear. We performed playback experiments in four breeding colonies to investigate whether males can discriminate local from non-local barks. Overall, males responded more strongly to barks from their own colony compared to barks from other colonies regardless of whether those other colonies were close or distant. Competition for females is high in Australian sea lions, but mating periods are asynchronous across colonies. The ability to correctly assess whether a male is from the same colony, thus representing a potential competitor for mates, or merely a visitor from elsewhere, may influence how males interact with others. Given the high cost of fighting, the ability to discern competitors may influence the nature of male-male interactions and ultimately influence how they allocate reproductive effort.


Asunto(s)
Leones Marinos/fisiología , Vocalización Animal/fisiología , Estimulación Acústica , Animales , Australia , Geografía , Masculino , Conducta Sexual Animal , Conducta Social
17.
J Anim Ecol ; 87(1): 199-211, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29063588

RESUMEN

In iteroparous species, intermittent breeding is an important life-history tactic that can greatly affect animal population growth and viability. Despite its importance, few studies have quantified the consequences of breeding pauses on lifetime reproductive output, principally because calculating lifetime reproductive output requires knowledge of each individual's entire reproductive history. This information is extremely difficult to obtain in wild populations. We applied novel statistical approaches that account for uncertainty in state assessment and individual heterogeneity to an 18-year capture-recapture dataset of 6,631 female southern elephant seals from Macquarie Island. We estimated survival and breeding probabilities, and investigated the consequences of intermittent breeding on lifetime reproductive output. We found consistent differences in females' demographic performance between two heterogeneity classes. In particular, breeding imbued a high cost on survival in the females from the heterogeneity class 2, assumed to be females of lower quality. Individual quality also appeared to play a major role in a female's decision to skip reproduction with females of poorer quality more likely to skip breeding events than females of higher quality. Skipping some breeding events allowed females from both heterogeneity classes to increase lifetime reproductive output over females that bred annually. However, females of lower quality produced less offspring over their lifetime. Intermittent breeding seems to be used by female southern elephant seals as a tactic to offset reproductive costs on survival and enhance lifetime reproductive output but remains unavoidable and driven by individual-specific constraints in some other females.


Asunto(s)
Reproducción , Phocidae/fisiología , Animales , Femenino , Longevidad , Probabilidad
18.
Glob Chang Biol ; 23(12): 5136-5150, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28590592

RESUMEN

Understanding divergent biological responses to climate change is important for predicting ecosystem level consequences. We use species habitat models to predict the winter foraging habitats of female southern elephant seals and investigate how changes in environmental variables within these habitats may be related to observed decreases in the Macquarie Island population. There were three main groups of seals that specialized in different ocean realms (the sub-Antarctic, the Ross Sea and the Victoria Land Coast). The physical and climate attributes (e.g. wind strength, sea surface height, ocean current strength) varied amongst the realms and also displayed different temporal trends over the last two to four decades. Most notably, sea ice extent increased on average in the Victoria Land realm while it decreased overall in the Ross Sea realm. Using a species distribution model relating mean residence times (time spent in each 50 × 50 km grid cell) to 9 climate and physical co-variates, we developed spatial predictions of residence time to identify the core regions used by the seals across the Southern Ocean from 120°E to 120°W. Population size at Macquarie Island was negatively correlated with ice concentration within the core habitat of seals using the Victoria Land Coast and the Ross Sea. Sea ice extent and concentration is predicted to continue to change in the Southern Ocean, having unknown consequences for the biota of the region. The proportion of Macquarie Island females (40%) utilizing the relatively stable sub-Antarctic region, may buffer this population against longer-term regional changes in habitat quality, but the Macquarie Island population has persistently decreased (-1.45% per annum) over seven decades indicating that environmental changes in the Antarctic are acting on the remaining 60% of the population to impose a long-term population decline in a top Southern Ocean predator.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Phocidae , Distribución Animal , Animales , Regiones Antárticas , Ecosistema , Femenino , Dinámica Poblacional , Estaciones del Año , Viento
19.
J Anim Ecol ; 86(2): 359-370, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27859273

RESUMEN

In mammals, maternal expenditure on offspring is a complex mix of several factors including the species' mating system, offspring sex and the condition and age of the mother. While theory suggests that in polygynous species mothers should wean larger male offspring than females when resources and maternal conditions allow, the evidence for this remains equivocal. Southern elephant seals are highly dimorphic, polygynous capital breeders existing in an environment with highly variable resources and should therefore provide clear evidence to support the theoretical expectations of differential maternal expenditure in male and female pups. We quantified maternal size (mass and length) and pup size at birth and weaning for 342 elephant seal mothers at Macquarie Island. The study was conducted over 11 years of contrasting sea-ice and Southern Annular Mode values, both indices of maternal prey resources. Overall, large females weaned male pups that weighed 17 kg (15·5%) more than female pups. Maternal condition varied by as much as 59 kg among years, and was positively related to Southern Annular Mode, and negatively to maximum sea-ice extent. Smaller mothers weaned relatively larger male pups under favourable conditions, this effect was less apparent for larger mothers. We developed a simple model linking environmental variation to maternal masses post-partum, followed by maternal masses post-partum to weaning masses and then weaning masses to pup survival and demonstrated that environmental conditions affected predicted survival so that the pups of small mothers had an estimated 7% increase in first year survival in 'good' vs. 'bad' years compared to 1% for female pups of large mothers. Co-occurrence of environmental quality and conservative reproductive tactics suggests that mothers retain substantial plasticity in maternal care, enhancing their lifetime reproductive success by adjusting reproductive expenditure relative to both prevailing environmental conditions and their own capabilities.


Asunto(s)
Peso Corporal , Reproducción , Phocidae/fisiología , Destete , Animales , Femenino , Islas , Masculino , Modelos Biológicos , Madres , Phocidae/crecimiento & desarrollo , Estaciones del Año , Tasmania
20.
Biol Lett ; 13(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29093175

RESUMEN

Parental care is an important factor influencing offspring survival and adult reproductive success in many vertebrates. Parent-offspring recognition ensures care is only directed to filial young, avoiding the costs of misallocated resource transfer. It is essential in colonial mammal species, such as otariids (fur seals and sea lions), in which repeated mother-offspring separations increase the risk of misdirecting maternal effort. Identification of otariid pups by mothers is known to be multi-modal, yet the role of visual cues in this process remains uncertain. We used three-dimensional visual models to investigate the importance of visual cues in maternal recognition of pups in Australian sea lions (Neophoca cinerea). We showed that the colour pattern of pup pelage in the absence of any other sensory cues served to attract the attention of females and prompt investigation. Furthermore, females were capable of accurately distinguishing between models imitating the age-class of their own pup and those resembling older or younger age-classes. Our results suggest that visual cues facilitate age-class discrimination of pups by females and so are likely to play an important role in mother-pup reunions and recognition in otariid species.


Asunto(s)
Señales (Psicología) , Conducta Materna , Leones Marinos/psicología , Factores de Edad , Agresión , Animales , Conducta Animal , Femenino , Color del Cabello
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA