RESUMEN
Photoactivatable (PA) rhodamine dyes are widely used in single-molecule tracking (SMT) and a variety of other fluorescence-based imaging modalities. One of the most commonly employed scaffolds uses a diazoketone to lock the rhodamine in the nonfluorescent closed form, which can be activated with 405 nm light. However, poor properties of previously reported dyes require significant washing, which can be resource- and cost-intensive, especially when performing microscopy in a large scale and high-throughput fashion. Here, we report improved diazoketorhodamines that perform exceptionally well in single-molecule tracking microscopy. We also report on the optimization of an improved synthetic method for further iteration and tailoring of diazoketorhodamines to the requirements of a specific user.
RESUMEN
The discovery of brown adipose tissue (BAT) as a key regulator of energy expenditure has sparked interest in identifying novel soluble factors capable of activating inducible BAT (iBAT) to combat obesity. Using a high content cell-based screen, we identified fibroblast growth factor 16 (FGF16) as a potent inducer of several physical and transcriptional characteristics analogous to those of both "classical" BAT and iBAT. Overexpression of Fgf16 in vivo recapitulated several of our in vitro findings, specifically the significant induction of the Ucp1 gene and UCP1 protein expression in inguinal white adipose tissue (iWAT), a common site for emergent active iBAT. Despite significant UCP1 up-regulation in iWAT and dramatic weight loss, the metabolic improvements observed due to Fgf16 overexpression in vivo were not the result of increased energy expenditure, as measured by indirect calorimetric assessment. Instead, a pattern of reduced food and water intake, combined with feces replete with lipid and bile acid, indicated a phenotype more akin to that of starvation and intestinal malabsorption. Gene expression analysis of the liver and ileum indicated alterations in several steps of bile acid metabolism, including hepatic synthesis and reabsorption. Histological analysis of intestinal tissue revealed profound abnormalities in support of this conclusion. The in vivo data, together with FGF receptor binding analysis, indicate that the in vivo outcome observed is the likely result of both direct and indirect mechanisms and probably involves multiple receptors. These results highlight the complexity of FGF signaling in the regulation of various metabolic processes.
Asunto(s)
Tejido Adiposo Blanco/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Termogénesis , Proteasas Ubiquitina-Específicas/biosíntesis , Tejido Adiposo Blanco/patología , Animales , Línea Celular , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Factores de Crecimiento de Fibroblastos/genética , Humanos , Ratones , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , Proteasas Ubiquitina-Específicas/genéticaRESUMEN
Small interfering RNA (siRNA) therapeutics have developed rapidly in recent years, despite the challenges associated with delivery of large, highly charged nucleic acids. Delivery of siRNA therapeutics to the liver has been established, with conjugation of siRNA to N-acetylgalactosamine (GalNAc) providing durable gene knockdown in hepatocytes following subcutaneous injection. GalNAc binds the asialoglycoprotein receptor (ASGPR) that is highly expressed on hepatocytes and exploits this scavenger receptor to deliver siRNA across the plasma membrane by endocytosis. However, siRNA needs to access the RNA-induced silencing complex (RISC) in the cytoplasm to provide effective gene knockdown, and the entire siRNA delivery process is very inefficient, likely because of steps required for endosomal escape, intracellular trafficking, and stability of siRNA. To reveal the cellular factors limiting delivery of siRNA therapeutics, we performed a genome-wide pooled knockout screen on the basis of delivery of GalNAc-conjugated siRNA targeting the HPRT1 gene in the human hepatocellular carcinoma line Hep3B. Our primary genome-wide pooled knockout screen identified candidate genes that when knocked out significantly enhanced siRNA efficacy in Hep3B cells. Follow-up studies indicate that knockout of RAB18 improved the efficacy of siRNA delivered by GalNAc, cholesterol, or antibodies, but not siRNA delivered by Lipofectamine transfection, suggesting a role for RAB18 in siRNA delivery and intracellular trafficking.
RESUMEN
Human genome wide association studies confirm the association of the rs738409 single nucleotide polymorphism (SNP) in the gene encoding protein patatin like phospholipase domain containing 3 (PNPLA3) with nonalcoholic fatty liver disease (NAFLD); the presence of the resulting mutant PNPLA3 I148M protein is a driver of nonalcoholic steatohepatitis (NASH). While Pnpla3-deficient mice do not display an adverse phenotype, the safety of knocking down endogenous wild type PNPLA3 in humans remains unknown. To expand the scope of a potential targeted NAFLD therapeutic to both homozygous and heterozygous PNPLA3 rs738409 populations, we sought to identify a minor allele-specific small interfering RNA (siRNA). Limiting our search to SNP-spanning triggers, a series of chemically modified siRNA were tested in vitro for activity and selectivity toward PNPLA3 rs738409 mRNA. Conjugation of the siRNA to a triantennary N-acetylgalactosamine (GalNAc) ligand enabled in vivo screening using adeno-associated virus to overexpress human PNPLA3I148M versus human PNPLA3I148I in mouse livers. Structure-activity relationship optimization yielded potent and minor allele-specific compounds that achieved high levels of mRNA and protein knockdown of human PNPLA3I148M but not PNPLA3I148I. Testing of the minor allele-specific siRNA in PNPLA3I148M-expressing mice fed a NASH-inducing diet prevented PNPLA3I148M-driven disease phenotypes, thus demonstrating the potential of a precision medicine approach to treating NAFLD.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Alelos , Animales , Estudio de Asociación del Genoma Completo , Lipasa/genética , Hígado , Proteínas de la Membrana/genética , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/terapia , Fosfolipasas A2 Calcio-Independiente , ARN Interferente Pequeño/genéticaRESUMEN
Adeno-associated virus (AAV) has been used extensively as a vector for gene therapy. Despite its widespread use, the mechanisms by which AAV enters the cell and is trafficked to the nucleus are poorly understood. In this study, we performed two pooled, genome-wide screens to identify positive and negative factors modulating AAV2 transduction. Genome-wide libraries directed against all human genes with four designs per gene or eight designs per gene were transduced into U-2 OS cells. These pools were transduced with AAV2 encoding EGFP and sorted based on the intensity of EGFP expression. Analysis of enriched and depleted barcodes in the sorted samples identified several genes that putatively decreased AAV2 transduction. A subset of screen hits was validated in flow cytometry and imaging studies. In addition to KIAA0319L (AAVR), we confirmed the role of two genes, GPR108 and TM9SF2, in mediating viral transduction in eight different AAV serotypes. Interestingly, GPR108 displayed serotype selectivity and was not required for AAV5 transduction. Follow-up studies suggested that GPR108 localized primarily to the Golgi, where it may interact with AAV and play a critical role in mediating virus escape or trafficking. Cumulatively, these results expand our understanding of the process of AAV transduction in different cell types and serotypes.