Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Stem Cells ; 37(1): 54-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30353632

RESUMEN

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) are at the center of new cell-based therapies for cardiac disease, but may also serve as a useful in vitro model for cardiac cell development. An intriguing feature of hESC-CMs is that although they express contractile proteins and have sarcomeres, they do not develop transverse-tubules (T-tubules) with adult-like Ca2+ release units (CRUs). We tested the hypothesis that expression of the protein BIN1 in hESC-CMs promotes T-tubules formation, facilitates CaV 1.2 channel clustering along the tubules, and results in the development of stable CRUs. Using electrophysiology, [Ca2+ ]i imaging, and super resolution microscopy, we found that BIN1 expression induced T-tubule development in hESC-CMs, while increasing differentiation toward a more ventricular-like phenotype. Voltage-gated CaV 1.2 channels clustered along the surface sarcolemma and T-tubules of hESC-CM. The length and width of the T-tubules as well as the expression and size of CaV 1.2 clusters grew, as BIN1 expression increased and cells matured. BIN1 expression increased CaV 1.2 channel activity and the probability of coupled gating within channel clusters. Interestingly, BIN1 clusters also served as sites for sarcoplasmic reticulum (SR) anchoring and stabilization. Accordingly, BIN1-expressing cells had more CaV 1.2-ryanodine receptor junctions than control cells. This was associated with larger [Ca2+ ]i transients during excitation-contraction coupling. Our data support the view that BIN1 is a key regulator of T-tubule formation and CaV 1.2 channel delivery. By studying the role of BIN1 during the differentiation of hESC-CMs, we show that BIN1 is also important for CaV 1.2 channel clustering, junctional SR organization, and the establishment of excitation-contraction coupling. Stem Cells 2019;37:54-64.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Señalización del Calcio , Diferenciación Celular , Humanos
2.
Stem Cells ; 36(6): 868-880, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29441645

RESUMEN

Aging severely limits myocardial repair and regeneration. Delineating the impact of age-associated factors such as short telomeres is critical to enhance the regenerative potential of cardiac progenitor cells (CPCs). We hypothesized that short telomeres activate p53 and induce autophagy to elicit the age-associated change in CPC fate. We isolated CPCs and compared mouse strains with different telomere lengths for phenotypic characteristics of aging. Wild mouse strain Mus musculus castaneus (CAST) possessing short telomeres exhibits early cardiac aging with cardiac dysfunction, hypertrophy, fibrosis, and senescence, as compared with common lab strains FVB and C57 bearing longer telomeres. CAST CPCs with short telomeres demonstrate altered cell fate as characterized by cell cycle arrest, senescence, basal commitment, and loss of quiescence. Elongation of telomeres using a modified mRNA for telomerase restores youthful properties to CAST CPCs. Short telomeres induce autophagy in CPCs, a catabolic protein degradation process, as evidenced by reduced p62 and increased accumulation of autophagic puncta. Pharmacological inhibition of autophagosome formation reverses the cell fate to a more youthful phenotype. Mechanistically, cell fate changes induced by short telomeres are partially p53 dependent, as p53 inhibition rescues senescence and commitment observed in CAST CPCs, coincident with attenuation of autophagy. In conclusion, short telomeres activate p53 and autophagy to tip the equilibrium away from quiescence and proliferation toward differentiation and senescence, leading to exhaustion of CPCs. This study provides the mechanistic basis underlying age-associated cell fate changes that will enable identification of molecular strategies to prevent senescence of CPCs. Stem Cells 2018;36:868-880.


Asunto(s)
Corazón/fisiología , Células Madre/metabolismo , Acortamiento del Telómero/fisiología , Telómero/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Envejecimiento , Animales , Autofagia , Diferenciación Celular , Humanos , Ratones
3.
Circ Res ; 117(8): 695-706, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26228030

RESUMEN

RATIONALE: Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. OBJECTIVE: To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. METHODS AND RESULTS: Two distinct and clonally derived CCs, CC1 and CC2, were used for this study. CCs improved left ventricular anterior wall thickness at 4 weeks post injury, but only CC1 treatment preserved anterior wall thickness at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC+MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC+MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. CONCLUSIONS: CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves on combinatorial cell approaches to support myocardial regeneration.


Asunto(s)
Infarto de la Pared Anterior del Miocardio/cirugía , Ventrículos Cardíacos/fisiopatología , Trasplante de Células Madre Mesenquimatosas , Miocitos Cardíacos/trasplante , Regeneración , Quimera por Trasplante , Animales , Animales Recién Nacidos , Infarto de la Pared Anterior del Miocardio/metabolismo , Infarto de la Pared Anterior del Miocardio/patología , Infarto de la Pared Anterior del Miocardio/fisiopatología , Biomarcadores/metabolismo , Proliferación Celular , Tamaño de la Célula , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Supervivencia de Injerto , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ratones , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neovascularización Fisiológica , Comunicación Paracrina , Fenotipo , Ratas , Recuperación de la Función , Volumen Sistólico , Factores de Tiempo , Transfección , Función Ventricular Izquierda
4.
J Biol Chem ; 290(42): 25411-26, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26324717

RESUMEN

Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca(2+). The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury. CPCs undergoing early differentiation in vitro increase levels of CaMKIIδB in the nuclear compartment where the kinase may contribute to the regulation of CPC commitment. CPCs modified with lentiviral-based constructs to overexpress CaMKIIδB (CPCeδB) have reduced proliferative rate compared with CPCs expressing eGFP alone (CPCe). Additionally, stable expression of CaMKIIδB promotes distinct morphological changes such as increased cell surface area and length of cells compared with CPCe. CPCeδB are resistant to oxidative stress induced by hydrogen peroxide (H2O2) relative to CPCe, whereas knockdown of CaMKIIδB resulted in an up-regulation of cell death and cellular senescence markers compared with scrambled treated controls. Dexamethasone (Dex) treatment increased mRNA and protein expression of cardiomyogenic markers cardiac troponin T and α-smooth muscle actin in CPCeδB compared with CPCe, suggesting increased differentiation. Therefore, CaMKIIδB may serve as a novel modulatory protein to enhance CPC survival and commitment into the cardiac and smooth muscle lineages.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Linaje de la Célula , Núcleo Celular/enzimología , Supervivencia Celular , Isoenzimas/metabolismo , Miocitos Cardíacos/citología , Transducción de Señal , Células Madre/citología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Técnicas de Silenciamiento del Gen , Isoenzimas/genética , Masculino , Ratones , Miocitos Cardíacos/enzimología , Células Madre/enzimología
5.
J Biol Chem ; 290(22): 13935-47, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25882843

RESUMEN

Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated ß-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics.


Asunto(s)
Regulación de la Expresión Génica , Corazón/fisiología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Células Madre/metabolismo , Apoptosis , Ciclo Celular , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Senescencia Celular , Proteínas Fluorescentes Verdes/metabolismo , Insuficiencia Cardíaca , Ventrículos Cardíacos/metabolismo , Humanos , Lentivirus/metabolismo , Mitocondrias/metabolismo , Miocardio/citología , Miocardio/metabolismo , Fenotipo , Regeneración , Células Madre/citología , Fracciones Subcelulares/metabolismo , beta-Galactosidasa/metabolismo
6.
Pharmacol Res ; 103: 13-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26563999

RESUMEN

During cardiac aging, DNA damage and environmental stressors contribute to telomeric shortening and human cardiac progenitor cells acquire a senescent phenotype that leads to decreased stem cell function. Reversion of this phenotype through genetic modification is essential to advance regenerative therapy. Studies in the cardiac specific overexpression and subcellular targeting of Pim1 kinase demonstrate its influence on regeneration, proliferation, survival, metabolism and senescence. The cardioprotective effects of Pim1 modification can be picked apart and enhanced by targeting the kinase to distinct subcellular compartments, allowing for selection of specific phenotypic traits after molecular modification. In this perspective, we examine the therapeutic implications of Pim1 to encourage the personalization of cardiac regenerative therapy.


Asunto(s)
Corazón/fisiología , Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Regeneración , Animales , Humanos , Medicina de Precisión
7.
J Mol Cell Cardiol ; 83: 32-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25886698

RESUMEN

Cardiac aging is a heterogeneous process caused by a combination of stochastic events which manifests as loss of structure and function in the heart, however several recent studies draw attention to aging being primarily a stem cell problem. This review summarizes findings in support of the "stem cell hypothesis of aging" and discusses the impact of age on cardiac stem cells and the niche. This article is part of a Special Issue entitled 'CV Aging'.


Asunto(s)
Envejecimiento/patología , Cardiomiopatías/patología , Miocardio/patología , Células Madre/patología , Envejecimiento/metabolismo , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , Diferenciación Celular , Proliferación Celular , Humanos , Ratones , Miocardio/metabolismo , Especificidad de la Especie , Nicho de Células Madre/fisiología , Trasplante de Células Madre , Células Madre/metabolismo
8.
J Biol Chem ; 289(9): 5348-56, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24375406

RESUMEN

Autologous c-kit(+) cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Miocardio/metabolismo , Isomerasa de Peptidilprolil/biosíntesis , Células Madre/metabolismo , Animales , Supervivencia Celular/fisiología , Ciclina B/genética , Ciclina B/metabolismo , Ciclina D/genética , Ciclina D/metabolismo , Ratones , Ratones Noqueados , Miocardio/citología , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/genética , Células Madre/citología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Biochim Biophys Acta ; 1842(6): 798-801, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24514103

RESUMEN

The nucleolus is a multifunctional organelle with multiple roles involving cell proliferation, growth, survival, ribosome biogenesis and stress response signaling. Alteration of nucleolar morphology and architecture signifies an early response to increased cellular stress. This review briefly summarizes nucleolar response to cardiac stress signals and details the role played by nucleolar proteins in cardiovascular pathophysiology. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Nucléolo Celular/genética , Proliferación Celular , Fibrilinas , Humanos , Proteínas de Microfilamentos/metabolismo , Nucleofosmina , Transducción de Señal , Nucleolina
10.
Basic Res Cardiol ; 110(3): 29, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893875

RESUMEN

Phase I clinical trials applying autologous progenitor cells to treat heart failure have yielded promising results; however, improvement in function is modest, indicating a need to enhance cardiac stem cell reparative capacity. Notch signaling plays a crucial role in cardiac development, guiding cell fate decisions that underlie myocyte and vessel differentiation. The Notch pathway is retained in the adult cardiac stem cell niche, where level and duration of Notch signal influence proliferation and differentiation of cardiac progenitors. In this study, Notch signaling promotes growth, survival and differentiation of cardiac progenitor cells into smooth muscle lineages in vitro. Cardiac progenitor cells expressing tamoxifen-regulated intracellular Notch1 (CPCeK) are significantly larger and proliferate more slowly than control cells, exhibit elevated mTORC1 and Akt signaling, and are resistant to oxidative stress. Vascular smooth muscle and cardiomyocyte markers increase in CPCeK and are augmented further upon ligand-mediated induction of Notch signal. Paracrine signals indicative of growth, survival and differentiation increase with Notch activity, while markers of senescence are decreased. Adoptive transfer of CPCeK into infarcted mouse myocardium enhances preservation of cardiac function and reduces infarct size relative to hearts receiving control cells. Greater capillary density and proportion of vascular smooth muscle tissue in CPCeK-treated hearts indicate improved vascularization. Finally, we report a previously undescribed signaling mechanism whereby Notch activation stimulates CPC growth, survival and differentiation via mTORC1 and paracrine factor expression. Taken together, these findings suggest that regulated Notch activation potentiates the reparative capacity of CPCs in the treatment of cardiac disease.


Asunto(s)
Diferenciación Celular/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Receptores Notch/metabolismo , Trasplante de Células Madre/métodos , Traslado Adoptivo , Animales , Linaje de la Célula , Modelos Animales de Enfermedad , Immunoblotting , Inmunohistoquímica , Ratones , Miocitos Cardíacos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Madre/citología , Células Madre/metabolismo
11.
Circ Res ; 113(10): 1169-79, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24044948

RESUMEN

RATIONALE: Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. OBJECTIVE: Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. METHODS AND RESULTS: C-kit-positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. CONCLUSIONS: Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC.


Asunto(s)
Proliferación Celular , Miocardio/patología , Fenotipo , Proteínas Proto-Oncogénicas c-pim-1/fisiología , Rejuvenecimiento/fisiología , Células Madre/patología , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Proteínas de Ciclo Celular/fisiología , Células Cultivadas , Senescencia Celular/fisiología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Corazón Auxiliar , Humanos , Masculino , Persona de Mediana Edad , Homeostasis del Telómero/fisiología
12.
Stem Cells ; 30(11): 2512-22, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915504

RESUMEN

Cardiac regeneration following myocardial infarction rests with the potential of c-kit+ cardiac progenitor cells (CPCs) to repopulate damaged myocardium. The ability of CPCs to reconstitute the heart is restricted by patient age and disease progression. Increasing CPC proliferation, telomere length, and survival will improve the ability of autologous CPCs to be successful in myocardial regeneration. Prior studies have demonstrated enhancement of myocardial regeneration by engineering CPCs to express Pim-1 kinase, but cellular and molecular mechanisms for Pim-1-mediated effects on CPCs remain obscure. We find CPCs rapidly expand following overexpression of cardioprotective kinase Pim-1 (CPCeP), however, increases in mitotic rate are short-lived as late passage CPCePs proliferate similar to control CPCs. Telomere elongation consistent with a young phenotype is observed following Pim-1 modification of CPCeP; in addition, telomere elongation coincides with increased telomerase expression and activity. Interestingly, telomere length and telomerase activity normalize after several rounds of passaging, consistent with the ability of Pim-1 to transiently increase mitosis without resultant oncogenic transformation. Accelerating mitosis in CPCeP without immortalization represents a novel strategy to expand the CPC population in order to improve their therapeutic efficacy.


Asunto(s)
Mitosis , Miocardio/citología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Células Madre/fisiología , Homeostasis del Telómero , Animales , Cardiotoxinas/farmacología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Doxorrubicina/farmacología , Activación Enzimática , Expresión Génica , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Ratones , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/genética , Medicina Regenerativa , Células Madre/enzimología , Células Madre/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero/efectos de los fármacos , Tiazoles/farmacología
13.
Circ Res ; 107(12): 1470-82, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20947830

RESUMEN

RATIONALE: autophagy, a bulk degradation process of cytosolic proteins and organelles, is protective during nutrient starvation in cardiomyocytes (CMs). However, the underlying signaling mechanism mediating autophagy is not well understood. OBJECTIVE: we investigated the role of FoxOs and its posttranslational modification in mediating starvation-induced autophagy. METHODS AND RESULTS: glucose deprivation (GD) increased autophagic flux in cultured CMs, as evidenced by increased mRFP-GFP-LC3 puncta and decreases in p62, which was accompanied by upregulation of Sirt1 and FoxO1. Overexpression of either Sirt1 or FoxO1 was sufficient for inducing autophagic flux, whereas both Sirt1 and FoxO1 were required for GD-induced autophagy. GD increased deacetylation of FoxO1, and Sirt1 was required for GD-induced deacetylation of FoxO1. Overexpression of FoxO1(3A/LXXAA), which cannot interact with Sirt1, or p300, a histone acetylase, increased acetylation of FoxO1 and inhibited GD-induced autophagy. FoxO1 increased expression of Rab7, a small GTP-binding protein that mediates late autophagosome-lysosome fusion, which was both necessary and sufficient for mediating FoxO1-induced increases in autophagic flux. Although cardiac function was maintained in control mice after 48 hours of food starvation, it was significantly deteriorated in mice with cardiac-specific overexpression of FoxO1(3A/LXXAA), those with cardiac-specific homozygous deletion of FoxO1 (c-FoxO1(-/-)), and beclin1(+/-) mice, in which autophagy is significantly inhibited. CONCLUSIONS: these results suggest that Sirt1-mediated deacetylation of FoxO1 and upregulation of Rab7 play an important role in mediating starvation-induced increases in autophagic flux, which in turn plays an essential role in maintaining left ventricular function during starvation.


Asunto(s)
Autofagia , Factores de Transcripción Forkhead/metabolismo , Miocitos Cardíacos/metabolismo , Sirtuina 1/metabolismo , Inanición/patología , Acetilación , Animales , Células Cultivadas , Proteína Forkhead Box O1 , Ratones , Miocitos Cardíacos/patología , Función Ventricular Izquierda , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
14.
Circulation ; 122(21): 2170-82, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21060073

RESUMEN

BACKGROUND: Silent information regulator 1 (Sirt1), a class III histone deacetylase, retards aging and protects the heart from oxidative stress. We here examined whether Sirt1 is protective against myocardial ischemia/reperfusion (I/R). METHODS AND RESULTS: Protein and mRNA expression of Sirt1 is significantly reduced by I/R. Cardiac-specific Sirt1(-/-) mice exhibited a significant increase (44±5% versus 15±5%; P=0.01) in the size of myocardial infarction/area at risk. In transgenic mice with cardiac-specific overexpression of Sirt1, both myocardial infarction/area at risk (15±4% versus 36±8%; P=0.004) and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei (4±3% versus 10±1%; P<0.003) were significantly reduced compared with nontransgenic mice. In Langendorff-perfused hearts, the functional recovery during reperfusion was significantly greater in transgenic mice with cardiac-specific overexpression of Sirt1 than in nontransgenic mice. Sirt1 positively regulates expression of prosurvival molecules, including manganese superoxide dismutase, thioredoxin-1, and Bcl-xL, whereas it negatively regulates the proapoptotic molecules Bax and cleaved caspase-3. The level of oxidative stress after I/R, as evaluated by anti-8-hydroxydeoxyguanosine staining, was negatively regulated by Sirt1. Sirt1 stimulates the transcriptional activity of FoxO1, which in turn plays an essential role in mediating Sirt1-induced upregulation of manganese superoxide dismutase and suppression of oxidative stress in cardiac myocytes. Sirt1 plays an important role in mediating I/R-induced increases in the nuclear localization of FoxO1 in vivo. CONCLUSIONS: These results suggest that Sirt1 protects the heart from I/R injury through upregulation of antioxidants and downregulation of proapoptotic molecules through activation of FoxO and decreases in oxidative stress.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Estrés Oxidativo/fisiología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/fisiología , Núcleo Celular/metabolismo , Regulación hacia Abajo/fisiología , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/patología , Miocardio/enzimología , Miocardio/patología , Superóxido Dismutasa/metabolismo
15.
Circ Res ; 105(5): 481-91, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19661458

RESUMEN

RATIONALE: NAD+ acts not only as a cofactor for cellular respiration but also as a substrate for NAD(+)-dependent enzymes, such as Sirt1. The cellular NAD+ synthesis is regulated by both the de novo and the salvage pathways. Nicotinamide phosphoribosyltransferase (Nampt) is a rate-limiting enzyme in the salvage pathway. OBJECTIVE: Here we investigated the role of Nampt in mediating NAD+ synthesis in cardiac myocytes and the function of Nampt in the heart in vivo. METHODS AND RESULTS: Expression of Nampt in the heart was significantly decreased by ischemia, ischemia/reperfusion and pressure overload. Upregulation of Nampt significantly increased NAD+ and ATP concentrations, whereas downregulation of Nampt significantly decreased them. Downregulation of Nampt increased caspase 3 cleavage, cytochrome c release, and TUNEL-positive cells, which were inhibited in the presence of Bcl-xL, but did not increase hairpin 2-positive cells, suggesting that endogenous Nampt negatively regulates apoptosis but not necrosis. Downregulation of Nampt also impaired autophagic flux, suggesting that endogenous Nampt positively regulates autophagy. Cardiac-specific overexpression of Nampt in transgenic mice increased NAD+ content in the heart, prevented downregulation of Nampt, and reduced the size of myocardial infarction and apoptosis in response to prolonged ischemia and ischemia/reperfusion. CONCLUSIONS: Nampt critically regulates NAD+ and ATP contents, thereby playing an essential role in mediating cell survival by inhibiting apoptosis and stimulating autophagic flux in cardiac myocytes. Preventing downregulation of Nampt inhibits myocardial injury in response to myocardial ischemia and reperfusion. These results suggest that Nampt is an essential gatekeeper of energy status and survival in cardiac myocytes.


Asunto(s)
Apoptosis , Citocinas/metabolismo , Miocitos Cardíacos/enzimología , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Autofagia , Caspasa 3/metabolismo , Células Cultivadas , Citocromos c , Citocinas/genética , Modelos Animales de Enfermedad , Metabolismo Energético , Ratones , Ratones Transgénicos , Isquemia Miocárdica/enzimología , Isquemia Miocárdica/patología , Miocitos Cardíacos/patología , Nicotinamida Fosforribosiltransferasa/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/enzimología , Daño por Reperfusión/patología , Proteína bcl-X/metabolismo
16.
Pediatr Cardiol ; 32(3): 275-81, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21170742

RESUMEN

Autophagy is a catabolic process that degrades long-lived proteins and damaged organelles by sequestering them into double membrane structures termed "autophagosomes" and fusing them with lysosomes. Autophagy is active in the heart at baseline and further stimulated under stress conditions including starvation, ischemia/reperfusion, and heart failure. It plays an adaptive role in the heart at baseline, thereby maintaining cardiac structure and function and inhibiting age-related cardiac abnormalities. Autophagy is activated by ischemia and nutrient starvation in the heart through Sirt1-FoxO- and adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent mechanisms, respectively. Activation of autophagy during ischemia is essential for cell survival and maintenance of cardiac function. Autophagy is strongly activated in the heart during reperfusion after ischemia. Activation of autophagy during reperfusion could be either protective or detrimental, depending on the experimental model. However, strong induction of autophagy accompanied by robust upregulation of Beclin1 could cause autophagic cell death, thereby proving to be detrimental. This review provides an overview regarding both protective and detrimental functions of autophagy in the heart and discusses possible applications of current knowledge to the treatment of heart disease.


Asunto(s)
Envejecimiento/fisiología , Autofagia , Isquemia Miocárdica/fisiopatología , Reperfusión Miocárdica , Humanos , Transducción de Señal
17.
Cardiovasc Res ; 117(1): 201-211, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32176281

RESUMEN

AIMS: Telomere attrition in cardiomyocytes is associated with decreased contractility, cellular senescence, and up-regulation of proapoptotic transcription factors. Pim1 is a cardioprotective kinase that antagonizes the aging phenotype of cardiomyocytes and delays cellular senescence by maintaining telomere length, but the mechanism remains unknown. Another pathway responsible for regulating telomere length is the transforming growth factor beta (TGFß) signalling pathway where inhibiting TGFß signalling maintains telomere length. The relationship between Pim1 and TGFß has not been explored. This study delineates the mechanism of telomere length regulation by the interplay between Pim1 and components of TGFß signalling pathways in proliferating A549 cells and post-mitotic cardiomyocytes. METHODS AND RESULTS: Telomere length was maintained by lentiviral-mediated overexpression of PIM1 and inhibition of TGFß signalling in A549 cells. Telomere length maintenance was further demonstrated in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1 and by pharmacological inhibition of TGFß signalling. Mechanistically, Pim1 inhibited phosphorylation of Smad2, preventing its translocation into the nucleus and repressing expression of TGFß pathway genes. CONCLUSION: Pim1 maintains telomere lengths in cardiomyocytes by inhibiting phosphorylation of the TGFß pathway downstream effectors Smad2 and Smad3, which prevents repression of telomerase reverse transcriptase. Findings from this study demonstrate a novel mechanism of telomere length maintenance and provide a potential target for preserving cardiac function.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Homeostasis del Telómero/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Células A549 , Animales , Humanos , Masculino , Ratones Noqueados , Miocitos Cardíacos/enzimología , Fosforilación , Proteínas Proto-Oncogénicas c-pim-1/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Telomerasa/metabolismo
18.
J Am Heart Assoc ; 6(10)2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018025

RESUMEN

BACKGROUND: Aberrant Ca2+ handling is a prominent feature of heart failure. Elucidation of the molecular mechanisms responsible for aberrant Ca2+ handling is essential for the development of strategies to blunt pathological changes in calcium dynamics. The peptidyl-prolyl cis-trans isomerase peptidyl-prolyl isomerase 1 (Pin1) is a critical mediator of myocardial hypertrophy development and cardiac progenitor cell cycle. However, the influence of Pin1 on calcium cycling regulation has not been explored. On the basis of these findings, the aim of this study is to define Pin1 as a novel modulator of Ca2+ handling, with implications for improving myocardial contractility and potential for ameliorating development of heart failure. METHODS AND RESULTS: Pin1 gene deletion or pharmacological inhibition delays cytosolic Ca2+ decay in isolated cardiomyocytes. Paradoxically, reduced Pin1 activity correlates with increased sarco(endo)plasmic reticulum calcium ATPase (SERCA2a) and Na2+/Ca2+ exchanger 1 protein levels. However, SERCA2a ATPase activity and calcium reuptake were reduced in sarcoplasmic reticulum membranes isolated from Pin1-deficient hearts, suggesting that Pin1 influences SERCA2a function. SERCA2a and Na2+/Ca2+ exchanger 1 associated with Pin1, as revealed by proximity ligation assay in myocardial tissue sections, indicating that regulation of Ca2+ handling within cardiomyocytes is likely influenced through Pin1 interaction with SERCA2a and Na2+/Ca2+ exchanger 1 proteins. CONCLUSIONS: Pin1 serves as a modulator of SERCA2a and Na2+/Ca2+ exchanger 1 Ca2+ handling proteins, with loss of function resulting in impaired cardiomyocyte relaxation, setting the stage for subsequent investigations to assess Pin1 dysregulation and modulation in the progression of heart failure.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Insuficiencia Cardíaca/enzimología , Miocitos Cardíacos/enzimología , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/enzimología , Intercambiador de Sodio-Calcio/metabolismo , Animales , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , Peptidilprolil Isomerasa de Interacción con NIMA/deficiencia , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Unión Proteica , Factores de Tiempo
19.
J Am Coll Cardiol ; 65(2): 133-47, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25593054

RESUMEN

BACKGROUND: Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES: This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. METHODS: CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS: NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/- mice. CONCLUSIONS: Youthful properties and antagonism of senescence in CPCs and the myocardium are consistent with a role for NS downstream from Pim-1 signaling that enhances cardiac regeneration.


Asunto(s)
Proteínas Portadoras/biosíntesis , Senescencia Celular/fisiología , Miocardio/citología , Proteínas Nucleares/biosíntesis , Rejuvenecimiento/fisiología , Células Madre/citología , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al GTP , Humanos , Masculino , Ratones , Ratones Noqueados , Miocardio/metabolismo , Proteínas de Unión al ARN , Células Madre/metabolismo
20.
Trends Cardiovasc Med ; 24(6): 256-62, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25070718

RESUMEN

Pin1 is an evolutionarily conserved peptidyl-prolyl isomerase that binds and changes the three-dimensional conformation of specific phospho-proteins. By regulating protein structure and folding, Pin1 affects the stability, interaction, and activity of a broad spectrum of target proteins, thus impacting upon diverse cellular processes. This review discusses the pivotal role Pin1 plays in regulating cardiac pathophysiology by functioning as a "molecular orchestrator" of a myriad of signal transduction pathways in the heart.


Asunto(s)
Miocardio/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Fosfoproteínas/metabolismo , Fenómenos Fisiológicos Celulares , Humanos , Fosforilación/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA