Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38616653

RESUMEN

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

2.
J Phys Chem A ; 128(22): 4548-4560, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713032

RESUMEN

We present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation. We apply these techniques to extensively characterize the dissociation of 1-iodopropane and 2-iodopropane dications prepared by site-selective ionization of the iodine atom using extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Our assignments are supported by classical simulations, using parameters largely obtained directly from the experimental data.

3.
Phys Chem Chem Phys ; 24(37): 22699-22709, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36106844

RESUMEN

We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.

4.
Faraday Discuss ; 228(0): 571-596, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33629700

RESUMEN

The photodissociation dynamics of strong-field ionized methyl iodide (CH3I) were probed using intense extreme ultraviolet (XUV) radiation produced by the SPring-8 Angstrom Compact free electron LAser (SACLA). Strong-field ionization and subsequent fragmentation of CH3I was initiated by an intense femtosecond infrared (IR) pulse. The ensuing fragmentation and charge transfer processes following multiple ionization by the XUV pulse at a range of pump-probe delays were followed in a multi-mass ion velocity-map imaging (VMI) experiment. Simultaneous imaging of a wide range of resultant ions allowed for additional insight into the complex dynamics by elucidating correlations between the momenta of different fragment ions using time-resolved recoil-frame covariance imaging analysis. The comprehensive picture of the photodynamics that can be extracted provides promising evidence that the techniques described here could be applied to study ultrafast photochemistry in a range of molecular systems at high count rates using state-of-the-art advanced light sources.

5.
J Chem Phys ; 150(17): 174306, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067899

RESUMEN

The molecular-frame photoelectron angular distributions (MFPADs) in O 1s photoemission from CO2 molecule were measured. Patterns due to photoelectron diffractions were observed in the MFPADs. The polarization-averaged MFPADs were compared with theoretical calculation and were found to be useful in determining the molecular bond-length, which is a component to determine molecular structures.

6.
Phys Rev Lett ; 121(26): 263201, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636148

RESUMEN

We report an experimental and numerical study of the propagation of free-electron laser pulses (wavelength 24.3 nm) through helium gas. Ionization and excitation populates the He^{+} 4p state. Strong, directional emission was observed at wavelengths of 469, 164, 30.4, and 25.6 nm. We interpret the emissions at 469 and 164 nm as 4p-3s-2p cascade superfluorescence, that at 30.4 nm as yoked superfluorescence on the 2p-1s transition, and that at 25.6 nm as free-induction decay of the 3p state.

7.
Opt Express ; 20(21): 23174-9, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-23188282

RESUMEN

Extreme ultraviolet (EUV) fluorescence emitted from Ar clusters irradiated by intense EUV free electron laser (FEL) pulses has been investigated. The EUV fluorescence spectra display rich structure at wavelengths shorter than the incident FEL wavelength of 51 nm. The results suggest that multiply-charged ions are produced following the ion-electron recombination processes which occur in the nanoplasma created by multi-photon excitation during the intense EUV-FEL pulses.


Asunto(s)
Argón/química , Argón/efectos de la radiación , Rayos Láser , Modelos Químicos , Simulación por Computador , Transporte de Electrón/efectos de la radiación , Electrones , Fluorescencia , Luz
8.
Phys Rev Lett ; 107(19): 193603, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22181606

RESUMEN

We have observed and characterized 501.6 nm collective spontaneous emission (superfluorescence) following 1s(2) → 1s3p excitation of helium atoms by 53.7 nm free-electron laser radiation. Emitted pulse energies of up to 100 nJ are observed, corresponding to a photon number conversion efficiency of up to 10%. We observe the peak intensity to scale as ρ(2) and the emitted pulse width and delay to scale as ρ(-1), where ρ is the atom number density. Emitted pulses as short as 1 ps are observed, which corresponds to a rate around 75,000 times faster than the spontaneous 1s3p → 1s2s decay rate. To our knowledge, this is the first observation of superfluorescence following pumping in the extreme ultraviolet wavelength region, and extension of the technique to the generation of extreme ultraviolet and x-ray superfluorescence pulses should be straightforward by using suitable atomic systems and pump wavelengths.

9.
J Phys Chem A ; 115(32): 8822-31, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21751798

RESUMEN

In an aim to create a "sharp" molecular knife, we have studied site-specific fragmentation caused by Si:2p core photoionization of bridged trihalosilyltrimethylsilyl molecules in the vapor phase. Highly site-specific bond dissociation has been found to occur around the core-ionized Si site in some of the molecules studied. The site specificity in fragmentation and the 2p binding energy difference between the two Si sites depend in similar ways on the intersite bridge and the electronegativities of the included halogen atoms. The present experimental and computational results show that for efficient "cutting" the following conditions for the two atomic sites to be separated by the knife should be satisfied. First, the sites should be located far from each other and connected by a chain of saturated bonds so that intersite electron migration can be reduced. Second, the chemical environments of the atomic sites should be as different as possible.

10.
J Chem Phys ; 128(14): 144311, 2008 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-18412449

RESUMEN

The carbon 1s photoelectron spectrum of CF4 measured at photon energies from 330 to 1500 eV shows significant contributions from nonsymmetric vibrational modes. These increase linearly as the photon energy increases. The excitation of these modes, which is not predicted in the usual Franck-Condon point of view, arises from the recoil momentum imparted to the carbon atom in the ionization process. A theory is presented for quantitative prediction of the recoil effect; the predictions of this theory are in agreement to the measurements. The experiments also yield the vibrational frequencies of the symmetric and asymmetric stretching modes in core-ionized CF4, the change in CF bond length upon ionization, -0.61 pm, and the Lorentzian linewidth of the carbon 1s hole, 67 meV.

11.
J Chem Phys ; 127(24): 244309, 2007 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-18163677

RESUMEN

The boron 1s photoelectron spectrum of (11)BF(3) has been measured at a photon energy of 400 eV and a resolution of about 55 meV. The pronounced vibrational structure seen in the spectrum has been analyzed to give the harmonic and anharmonic vibrational frequencies of the symmetric stretching mode, 128.1 and 0.15 meV, as well as the change in equilibrium BF bond length upon ionization, -5.83 pm. A similar change in bond length has been observed for PF(3) and SiF(4), but a much smaller change for CF(4). Theoretical calculations for BF(3) that include the effects of electron correlation give results that are in reasonable accord with the experimental values. The Lorentzian (lifetime) width of the boron 1s core hole in BF(3) is found to be 72 meV, comparable to the value of 77 meV that has been reported for CF(4).

12.
J Chem Phys ; 125(19): 194307, 2006 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-17129103

RESUMEN

Inner-shell excitation spectra and fragmentation of small clusters of formic acid have been studied in the oxygen K-edge region by time-of-flight fragment mass spectroscopy. In addition to several fragment cations smaller than the parent molecule, we have identified the production of HCOOH.H+ and H3O+ cations characteristic of proton transfer reactions within the clusters. Cluster-specific excitation spectra have been generated by monitoring the partial ion yields of the product cations. Resonance transitions of O1s(C[double bond]O/OH) electrons into pi(CO)* orbital in the preedge region were found to shift in energy upon clusterization. A blueshift of the O1s(C[double bond]O)-->pi(CO)* transition by approximately 0.2 eV and a redshift of the O1s(OH)-->pi(CO)* by approximately 0.6 eV were observed, indicative of strong hydrogen-bond formation within the clusters. The results have been compared with a recent theoretical calculation, which supports the conclusion that the formic-acid clusters consist of the most stable cyclic dimer andor trimer units. Specifically labeled formic acid-d, HCOOD, was also used to examine the core-excited fragmentation mechanisms. These deuterium-labeled experiments showed that HDO+ was formed via site-specific migration of a formyl hydrogen within an individual molecule, and that HD2O+ was produced via the subsequent transfer of a deuterium atom from the hydroxyl group of a nearest-neighbor molecule within a cationic cluster. Deuteron (proton) transfer from the hydroxyl site of a hydrogen-bond partner was also found to take place, producing deuteronated HCOOD.D+ (protonated HCOOH.H+) cations within the clusters.

13.
Phys Rev Lett ; 90(13): 133002, 2003 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-12689282

RESUMEN

We report the first experimental measurements of the effect of an applied field on the photoexcitation and autoionization of doubly excited states of helium. Ground-state photoionization spectra have been measured in the region below the He+(N=2) threshold with static electric fields of up to 84.4 kV/cm across the interaction region. The results are compared to the theoretical calculations of Chung et al. [J. Phys. B 34, 165 (2001)]], which are the only calculations available in this regime. Transitions to several states in the N=2, n=6 manifold are assigned, and a wealth of new structure is observed. Our data show that many more series are mixed in by the field than those predicted by theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA