Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Methods ; 19(12): 1563-1567, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36396787

RESUMEN

Fluorescent in-situ hybridization (FISH)-based methods extract spatially resolved genetic and epigenetic information from biological samples by detecting fluorescent spots in microscopy images, an often challenging task. We present Radial Symmetry-FISH (RS-FISH), an accurate, fast, and user-friendly software for spot detection in two- and three-dimensional images. RS-FISH offers interactive parameter tuning and readily scales to large datasets and image volumes of cleared or expanded samples using distributed processing on workstations, clusters, or the cloud. RS-FISH maintains high detection accuracy and low localization error across a wide range of signal-to-noise ratios, a key feature for single-molecule FISH, spatial transcriptomics, or spatial genomics applications.


Asunto(s)
Colorantes , Epigenómica , Hibridación Fluorescente in Situ , Genómica , Microscopía
2.
Nat Methods ; 18(4): 374-377, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33795878

RESUMEN

SNT is an end-to-end framework for neuronal morphometry and whole-brain connectomics that supports tracing, proof-editing, visualization, quantification and modeling of neuroanatomy. With an open architecture, a large user base, community-based documentation, support for complex imagery and several model organisms, SNT is a flexible resource for the broad neuroscience community. SNT is both a desktop application and multi-language scripting library, and it is available through the Fiji distribution of ImageJ.


Asunto(s)
Encéfalo/anatomía & histología , Neuronas/citología , Animales , Encéfalo/citología , Conectoma , Humanos , Análisis de la Célula Individual
4.
Bioinformatics ; 34(5): 899-900, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29106446

RESUMEN

Summary: FunImageJ is a Lisp framework for scientific image processing built upon the ImageJ software ecosystem. The framework provides a natural functional-style for programming, while accounting for the performance requirements necessary in big data processing commonly encountered in biological image analysis. Availability and implementation: Freely available plugin to Fiji (http://fiji.sc/#download). Installation and use instructions available at http://imagej.net/FunImageJ. Contact: kharrington@uidaho.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Animales , Embrión de Mamíferos/fisiología , Ratones
5.
Biosystems ; 173: 214-220, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30554603

RESUMEN

We have designed and constructed a Flipping Stage for a light microscope that can view the whole exterior surface of a 2 mm diameter developing axolotl salamander embryo. It works by rapidly inverting the bottom-heavy embryo, imaging it as it rights itself. The images are then montaged to reconstruct the whole 3D surface versus time, for a full 4D record of the surface. Imaging early stage axolotl development will help discover how cell differentiation and movement takes place in the early embryo. For example, the switch from ectodermal to neural plate cells takes place on the top, animal surface portion the egg/embryo and can be observed using the flipping stage microscope. Detailed pictures of the whole surface need to be obtained so that cell tracking and event histories, such as cell divisions and participation in differentiation waves, of individual cells can be recorded. Imaging the whole exterior of the eggs/embryos will allow for the analysis of cell behavior and the forces the cells experience in their natural setting in the intact or manipulated embryo. This will give insights into embryogenesis, development, developmental disruptions, birth defects, cell differentiation and tissue engineering.


Asunto(s)
Ambystoma mexicanum/fisiología , Desarrollo Embrionario , Microscopía Confocal/instrumentación , Robótica/instrumentación , Animales , Diferenciación Celular , Movimiento Celular , Embrión no Mamífero , Procesamiento de Imagen Asistido por Computador , Microscopía , Microscopía Confocal/métodos , Placa Neural/fisiología , Robótica/métodos , Ingeniería de Tejidos
6.
Nat Cell Biol ; 18(12): 1292-1301, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27870831

RESUMEN

The asymmetric division of stem or progenitor cells generates daughters with distinct fates and regulates cell diversity during tissue morphogenesis. However, roles for asymmetric division in other more dynamic morphogenetic processes, such as cell migration, have not previously been described. Here we combine zebrafish in vivo experimental and computational approaches to reveal that heterogeneity introduced by asymmetric division generates multicellular polarity that drives coordinated collective cell migration in angiogenesis. We find that asymmetric positioning of the mitotic spindle during endothelial tip cell division generates daughters of distinct size with discrete 'tip' or 'stalk' thresholds of pro-migratory Vegfr signalling. Consequently, post-mitotic Vegfr asymmetry drives Dll4/Notch-independent self-organization of daughters into leading tip or trailing stalk cells, and disruption of asymmetry randomizes daughter tip/stalk selection. Thus, asymmetric division seamlessly integrates cell proliferation with collective migration, and, as such, may facilitate growth of other collectively migrating tissues during development, regeneration and cancer invasion.


Asunto(s)
División Celular Asimétrica , Movimiento Celular , Neovascularización Fisiológica , Animales , Polaridad Celular , Tamaño de la Célula , Simulación por Computador , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Mitosis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal , Imagen de Lapso de Tiempo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
7.
Elife ; 52016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26910011

RESUMEN

Vascular network density determines the amount of oxygen and nutrients delivered to host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to determine vascular density. Iterating between computational modeling and in vivo live imaging, we demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at the expense of branching, dictating network density. We provide the first example of a host tissue-derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense network. We propose that temporal regulation of this critical, iterative aspect of network formation could be a general mechanism, and additional temporal regulators may exist to sculpt vascular topology.


Asunto(s)
Proliferación Celular , Células Endoteliales/fisiología , Neovascularización Fisiológica , Receptores Notch/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Simulación por Computador , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Óptica
8.
Commun Integr Biol ; 7(1): e28230, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24778764

RESUMEN

Microbial communities abound with examples of complex social interactions that shape microbial ecosystems. One particularly striking example is microbial cooperation via the secretion of public goods. It has been suggested by theory, and recently demonstrated experimentally, that microbial population dynamics and the evolutionary dynamics of cooperative social genes take place with similar timescales, and are linked to each other via an eco-evolutionary feedback loop. We overview this recent evidence, and discuss the possibility that a third process may be also part of this loop: phenotypic dynamics. Complex social strategies may be implemented at the single-cell level by means of gene regulatory networks. Thus gene expression plasticity or stochastic gene expression, both of which may occur with a timescale of one to a few generations, can potentially lead to a three-way coupling between behavioral dynamics, population dynamics, and evolutionary dynamics.

9.
Nat Neurosci ; 14(7): 889-95, 2011 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-21685918

RESUMEN

How animals maintain proper amounts of sleep yet remain flexible to changes in environmental conditions remains unknown. We found that environmental light suppressed the wake-promoting effects of dopamine in fly brains. The ten large lateral-ventral neurons (l-LNvs), a subset of clock neurons, are wake-promoting and respond to dopamine, octopamine and light. Behavioral and imaging analyses suggested that dopamine is a stronger arousal signal than octopamine. Notably, light exposure not only suppressed l-LNv responses, but also synchronized responses of neighboring l-LNvs. This regulation occurred by distinct mechanisms: light-mediated suppression of octopamine responses was regulated by the circadian clock, whereas light regulation of dopamine responses occurred by upregulation of inhibitory dopamine receptors. Plasticity therefore alters the relative importance of diverse cues on the basis of the environmental mix of stimuli. The regulatory mechanisms described here may contribute to the control of sleep stability while still allowing behavioral flexibility.


Asunto(s)
Relojes Circadianos/fisiología , Dopamina/farmacología , Ventrículos Laterales/citología , Luz , Neuronas/fisiología , Vigilia/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Agonistas alfa-Adrenérgicos/farmacología , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Conducta Animal/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , AMP Cíclico/metabolismo , Dopamina/metabolismo , Drosophila , Proteínas de Drosophila/genética , Procesamiento Automatizado de Datos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Microscopía Confocal , Neuronas/efectos de los fármacos , Octopamina/metabolismo , Octopamina/farmacología , Receptores Dopaminérgicos/metabolismo , Sueño/genética , Temperatura , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA