Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(39): e2318900121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39288178

RESUMEN

Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.


Asunto(s)
Calmodulina , Simulación de Dinámica Molecular , Fosfatidilinositol 4,5-Difosfato , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Animales , Calmodulina/metabolismo , Calmodulina/química , Humanos , Activación del Canal Iónico , Calcio/metabolismo , Unión Proteica , Miocitos Cardíacos/metabolismo
2.
EMBO Rep ; 24(7): e56783, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37158562

RESUMEN

Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross-domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states.


Asunto(s)
Canales Catiónicos TRPP , Canales de Potencial de Receptor Transitorio , Humanos , Ratones , Animales , Canales Catiónicos TRPP/química , Transducción de Señal , Transporte Iónico , Canales de Potencial de Receptor Transitorio/genética , Mutación , Receptores de Superficie Celular/metabolismo , Canales de Calcio/metabolismo
3.
J Cell Physiol ; 239(7): e31301, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38764220

RESUMEN

Inclusivity in biomedical research provides many positive attributes, including increased productivity, higher creativity, and improved wellness for all. While marginalized individuals work tirelessly to achieve equity and inclusion, this task should not be left solely to those most affected by exclusionary tactics. These individuals and the organizations with whom they are affiliated would benefit from the support of an ally. An ally is defined as a person or organization that actively supports the rights of a marginalized group without being a member of it. Allies have a unique opportunity to play a pivotal role in promoting fairness, equity, and inclusion, and thus serve as positive change agents within an organizational setting. We summarize here the importance of being an effective and dynamic ally and offer guidance on how to achieve that goal.


Asunto(s)
Investigación Biomédica , Humanos
4.
J Cell Physiol ; 239(7): e31324, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38785335

RESUMEN

While PhD programs prepare graduate students to perform biomedical research, a defined systematic training program for transferable skills is generally lacking. When provided, this training is often informal, unstructured, or inconsistent. Therefore, there is a need to provide critical skills in marketing, relationship building, project management, and budgeting to prepare trainees to navigate into a productive, engaging, and rewarding biomedical research career. To address this gap in training, the School of Graduate Studies at Meharry Medical College has developed the SHort Course In transFerable skills Training (SHIFT) Program, a 1-year professional development program accessible to graduate students in the United States who are enrolled in graduate biomedical research related programs. The SHIFT Program has been launched to equip trainees with skills essential for success in all biomedical science careers. PhD students will be taught the primary constituents of career management through the use of four training modules. In Module I, students complete self-assessments and are assigned to a small peer-mentoring team with mentors. Module II consists of a 5-day workshop that encompasses instruction on the transferable skills identified as essential for career success. Module III entails monthly interactive discussions over a 6-month period involving case study review and mentor-guided discussions to further reinforce skills learned. In Module IV, students compile the information learned from Modules I-III to develop an Individual Development Plan that incorporates 3-5 specific, measurable, attainable, relevant, and time-based career goals. Collectively, the SHIFT Program will allow participants to train, practice, and refresh skills, empowering them to navigate career transitions and obtain success in the career of their choice.


Asunto(s)
Curriculum , Humanos , Selección de Profesión , Investigación Biomédica/educación , Mentores , Educación de Postgrado/métodos , Estados Unidos
5.
Front Pharmacol ; 15: 1411428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919257

RESUMEN

Ion channels are critical drug targets for a range of pathologies, such as epilepsy, pain, itch, autoimmunity, and cardiac arrhythmias. To develop effective and safe therapeutics, it is necessary to design small molecules with high potency and selectivity for specific ion channel subtypes. There has been increasing implementation of structure-guided drug design for the development of small molecules targeting ion channels. We evaluated the performance of two RosettaLigand docking methods, RosettaLigand and GALigandDock, on the structures of known ligand-cation channel complexes. Ligands were docked to voltage-gated sodium (NaV), voltage-gated calcium (CaV), and transient receptor potential vanilloid (TRPV) channel families. For each test case, RosettaLigand and GALigandDock methods frequently sampled a ligand-binding pose within a root mean square deviation (RMSD) of 1-2 Å relative to the experimental ligand coordinates. However, RosettaLigand and GALigandDock scoring functions cannot consistently identify experimental ligand coordinates as top-scoring models. Our study reveals that the proper scoring criteria for RosettaLigand and GALigandDock modeling of ligand-ion channel complexes should be assessed on a case-by-case basis using sufficient ligand and receptor interface sampling, knowledge about state-specific interactions of the ion channel, and inherent receptor site flexibility that could influence ligand binding.

6.
Elife ; 112022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36511779

RESUMEN

The southern house mosquito, Culex quinquefasciatus, utilizes two odorant receptors, CquiOR10 and CquiOR2, narrowly tuned to oviposition attractants and well conserved among mosquito species. They detect skatole and indole, respectively, with reciprocal specificity. We swapped the transmembrane (TM) domains of CquiOR10 and CquiOR2 and identified TM2 as a specificity determinant. With additional mutations, we showed that CquiOR10A73L behaved like CquiOR2. Conversely, CquiOR2L74A recapitulated CquiOR10 specificity. Next, we generated structural models of CquiOR10 and CquiOR10A73L using RoseTTAFold and AlphaFold and docked skatole and indole using RosettaLigand. These modeling studies suggested space-filling constraints around A73. Consistent with this hypothesis, CquiOR10 mutants with a bulkier residue (Ile, Val) were insensitive to skatole and indole, whereas CquiOR10A73G retained the specificity to skatole and showed a more robust response than the wildtype receptor CquiOR10. On the other hand, Leu to Gly mutation of the indole receptor CquiOR2 reverted the specificity to skatole. Lastly, CquiOR10A73L, CquiOR2, and CquiOR2L74I were insensitive to 3-ethylindole, whereas CquiOR2L74A and CquiOR2L74G gained activity. Additionally, CquiOR10A73G gave more robust responses to 3-ethylindole than CquiOR10. Thus, we suggest the specificity of these receptors is mediated by a single amino acid substitution, leading to finely tuned volumetric space to accommodate specific oviposition attractants.


Asunto(s)
Culicidae , Receptores Odorantes , Animales , Femenino , Culicidae/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Escatol , Aminoácidos , Indoles , Oviposición/fisiología
7.
Phys Rev E ; 97(6-1): 062408, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30011465

RESUMEN

Microtubule rigidity is important for many cellular functions to support extended structures and rearrange materials within the cell. The arrangement of the tubulin dimers within the microtubule can be altered to affect the protofilament number and the lattice type. Prior electron microscopy measurements have shown that when polymerized in the presence of a high concentration of NaCl, microtubules were more likely to be ten protofilaments with altered intertubulin lattice types. Specifically, such high-salt microtubules have a higher percentage of seam defects. Such seams have long been speculated to be a mechanically weak location in the microtubule lattice, yet no experimental evidence supported this claim. We directly measured the persistence length of freely fluctuating filaments made either with high salt or without. We found that the microtubules made with high salt were more flexible, by a factor of 2, compared to those polymerized the same way without salt present. The reduced persistence length of the high-salt microtubules can be accounted for entirely by a smaller cross-sectional radius of these microtubules, implying that the mixed lattice interactions have little effect on the bending rigidity. Our results suggest that the microtubule seam is not weaker than the typical lattice structure as previously speculated from structural studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA