RESUMEN
Assessing the impact of an intervention by using time-series observational data on multiple units and outcomes is a frequent problem in many fields of scientific research. Here, we propose a novel Bayesian multivariate factor analysis model for estimating intervention effects in such settings and develop an efficient Markov chain Monte Carlo algorithm to sample from the high-dimensional and nontractable posterior of interest. The proposed method is one of the few that can simultaneously deal with outcomes of mixed type (continuous, binomial, count), increase efficiency in the estimates of the causal effects by jointly modeling multiple outcomes affected by the intervention, and easily provide uncertainty quantification for all causal estimands of interest. Using the proposed approach, we evaluate the impact that Local Tracing Partnerships had on the effectiveness of England's Test and Trace programme for COVID-19.
RESUMEN
Ricin is a toxin which enters cells and depurinates an adenine base in the sarcin-ricin loop in the large ribosomal subunit, leading to the inhibition of protein translation and cell death. We postulated that this depurination event could be detected using Oxford Nanopore Technologies (ONT) direct RNA sequencing, detecting a change in charge in the ricin loop. In this study, A549 cells were exposed to ricin for 2-24 h in order to induce depurination. In addition, a novel software tool was developed termed RIPpore that could quantify the adenine modification of ribosomal RNA induced by ricin upon respiratory epithelial cells. We provided demonstrable evidence for the first time that this base change detected is specific to RIP activity using a neutralising antibody against ricin. We believe this represents the first detection of depurination in RNA achieved using ONT sequencers. Collectively, this work highlights the potential for ONT and direct RNA sequencing to detect and quantify depurination events caused by ribosome-inactivating proteins such as ricin. RIPpore could have utility in the evaluation of new treatments and/or in the diagnosis of exposure to ricin.
Asunto(s)
Nanoporos , Ricina , Adenina/metabolismo , ARN/metabolismo , Ribosomas/metabolismo , Ricina/metabolismo , Ricina/toxicidad , Análisis de Secuencia de ARNRESUMEN
Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16-20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement.
Asunto(s)
COVID-19/prevención & control , Enfermedades Transmisibles Importadas/prevención & control , Cuarentena/legislación & jurisprudencia , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/transmisión , Enfermedades Transmisibles Importadas/epidemiología , Enfermedades Transmisibles Importadas/transmisión , Trazado de Contacto , Inglaterra/epidemiología , Genoma Viral/genética , Genómica , Evaluación del Impacto en la Salud , Humanos , SARS-CoV-2/clasificación , Viaje/legislación & jurisprudencia , Enfermedad Relacionada con los ViajesRESUMEN
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic infection that emerged in the Middle East in 2012. Symptoms range from mild to severe and include both respiratory and gastrointestinal illnesses. The virus is mainly present in camel populations with occasional zoonotic spill over into humans. The severity of infection in humans is influenced by numerous factors, and similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underlying health complications can play a major role. Currently, MERS-CoV and SARS-CoV-2 are coincident in the Middle East and thus a rapid way of sequencing MERS-CoV to derive genotype information for molecular epidemiology is needed. Additionally, complicating factors in MERS-CoV infections are coinfections that require clinical management. The ability to rapidly characterize these infections would be advantageous. To rapidly sequence MERS-CoV, an amplicon-based approach was developed and coupled to Oxford Nanopore long read length sequencing. This and a metagenomic approach were evaluated with clinical samples from patients with MERS. The data illustrated that whole-genome or near-whole-genome information on MERS-CoV could be rapidly obtained. This approach provided data on both consensus genomes and the presence of minor variants, including deletion mutants. The metagenomic analysis provided information of the background microbiome. The advantage of this approach is that insertions and deletions can be identified, which are the major drivers of genotype change in coronaviruses. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in late 2012 in Saudi Arabia. The virus is a serious threat to people not only in the Middle East but also in the world and has been detected in over 27 countries. MERS-CoV is spreading in the Middle East and neighboring countries, and approximately 35% of reported patients with this virus have died. This is the most severe coronavirus infection so far described. Saudi Arabia is a destination for many millions of people in the world who visit for religious purposes (Umrah and Hajj), and so it is a very vulnerable area, which imposes unique challenges for effective control of this epidemic. The significance of our study is that clinical samples from patients with MERS were used for rapid in-depth sequencing and metagenomic analysis using long read length sequencing.