Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Fish Biol ; 104(1): 139-154, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37696767

RESUMEN

Salmonids were first introduced into the Chilean fresh waters in the 1880s, and c. 140 years later, they are ubiquitous across Chilean rivers, especially in the southern pristine fresh waters. This study examined the brown trout (Salmo trutta) and native taxa ecology in two adjacent but contrasting rivers of Chilean Patagonia. During spring 2016 and spring-fall 2017 we examined the variation in benthic macroinvertebrate and fish community composition and characterized fish size structure, stomach contents, and stable isotopes (δ13 C and δ15 N) to understand population structure, fish diet, and trophic interactions between S. trutta and native taxa. The native Galaxias maculatus (puye) dominated the fish community (74% of abundance). S. trutta was less abundant (16% of survey catch) but dominated the fish community (over 53%) in terms of biomass. S. trutta showed distinct diets (stomach content analysis) in the two rivers, and individuals from the larger river were notably more piscivorous, consuming native fish with a relatively small body size (<100-mm total length). Native fishes were isotopically distinct from S. trutta, which showed a wider isotopic niche in the smaller river, indicating that their trophic role was more variable than in the larger river (piscivorous). This study provides data from the unstudied pristine coastal rivers in Patagonia and reveals that interactions between native and introduced species can vary at very local spatial scales.


Asunto(s)
Osmeriformes , Salmonidae , Animales , Ríos/química , Trucha , Agua Dulce
2.
Rapid Commun Mass Spectrom ; 36(16): e9336, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35711127

RESUMEN

RATIONALE: The analysis of natural variation in light stable isotopes such as carbon (δ13 C), nitrogen (δ15 N) and sulfur (δ34 S) plays an important role in deepening our understanding of ecosystems. To avoid misinterpretation, robust results are required, where pre-treatment steps such as sample homogenization are crucial to guarantee representative samples. The grinding of samples using stainless steel balls in polypropylene tubes (e.g., laboratory bead-beater) has been identified as a potential source of bias. METHODS: We tested possible effects of mill-grinding (e.g., contamination) of samples of coastal marine taxa including primary producers, primary consumers and higher trophic level fish. We compared potential impacts of homogenization by mill-grinding with hand-grinding over an extended time on δ13 C, δ15 N and δ34 S values. RESULTS: One-way Welch's analysis of variance (ANOVA) showed that there were no statistical differences between methods for all the studied taxa. Also, repeated measures ANOVA showed no evidence of effects of grinding for extended times (from 30 to 120 seconds) for δ13 C, δ15 N and δ34 S values. CONCLUSIONS: We found no evidence that grinding samples in polypropylene tubes in a bead-beater resulted in any marked alteration of the isotopic composition on the studied samples, e.g., through contamination by plastic. As such, we consider mill-grinding as an appropriate method for the homogenization of samples from a range of different marine taxa, which under controlled conditions did not affect δ13 C, δ15 N and δ34 S analysis.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Polipropilenos
3.
Oecologia ; 199(2): 343-354, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35678930

RESUMEN

The success of maternal foraging strategies during the rearing period can greatly impact the physiology and survival of dependent offspring. Surprisingly though, little is known on the fitness consequences of foraging strategies during the foetal period. In this study, we characterized variation in maternal foraging strategy throughout pregnancy in a marine top predator (South American fur seal, Arctocephalus australis), and asked if these shifts predicted neonatal health and postnatal survival. We found that during early pregnancy all pregnant females belonged to a single, homogenized foraging niche without evident clusters. Intriguingly though, during late pregnancy, individual fur seal mothers diverged into two distinct foraging niches characterized by a benthic-nearshore and a pelagic-offshore strategy. Females that shifted towards the benthic-nearshore strategy gave birth to pups with greater body mass, higher plasmatic levels of glucose and lower levels of blood urea nitrogen. The pups born to these benthic females were eight times more likely to survive compared to females using the pelagic-offshore foraging strategy during late pregnancy. These survival effects were mediated primarily by the impact of foraging strategies on neonatal glucose independent of protein metabolic profile and body mass. Benthic-nearshore foraging strategies during late pregnancy potentially allow for the greater maternal transfer of glucose to the foetus, leading to higher chances of neonatal survival. These results call for a deeper understanding of the balance between resource acquisition and allocation provided by distinct foraging polymorphisms during critical life-history periods, and how this trade-off may be adaptive under certain environmental conditions.


Asunto(s)
Lobos Marinos , Animales , Femenino , Lobos Marinos/fisiología , Glucosa , Embarazo
4.
J Fish Biol ; 101(2): 389-399, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35142375

RESUMEN

European whitefish is a model species for adaptive radiation of fishes in temperate and subarctic lakes. In northern Europe the most commonly observed morphotypes are a generalist (LSR) morph and a pelagic specialist (DR) morph. The evolution of a pelagic specialist morph is something of an enigma, however, as this region is characterized by long, dark winters with pelagic primary production limited to a brief window in late summer. We conducted the first winter-based study of polymorphic whitefish populations to determine the winter ecology of both morphs, and we combined seasonal diet and stable isotope analysis with several proxies of condition in three polymorphic whitefish populations. The generalist LSR morph fed on benthic and pelagic prey in summer but was solely reliant on benthic prey in winter. This was associated with a noticeable but moderate reduction in condition, lipid content and stomach fullness in winter relative to summer. In contrast, the DR whitefish occupied a strict pelagic niche in both seasons. A significant reduction in pelagic prey during winter resulted in severe decrease in condition, lipid content and stomach fullness in DR whitefish in winter relative to summer, with the pelagic morph apparently approaching starvation in winter. We suggest that this divergent approach to seasonal foraging is associated with the divergent life-history traits of both morphs.


Asunto(s)
Salmonidae , Animales , Europa (Continente) , Lagos/química , Lípidos , Estaciones del Año
5.
J Fish Biol ; 96(6): 1495-1500, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32187706

RESUMEN

The Cape Horn Biosphere Reserve, one of the last wild areas of the planet, is not exempt from the pressures of global change, such as non-native species introductions. During 2018 and 2019 we studied the Róbalo river basin in order to update the diversity and distribution of fishes. Here, we report for the first time the native and endangered "Peladillas" Aplochiton taeniatus and the non-native coho salmon Oncorhynchus kisutch. The coexistence of native and non-native fishes poses a challenge for the management and conservation of aquatic biota from the Cape Horn Biosphere Reserve.


Asunto(s)
Peces , Oncorhynchus kisutch , Distribución Animal , Animales , Chile , Especies en Peligro de Extinción/estadística & datos numéricos , Peces/fisiología
6.
Proc Biol Sci ; 286(1899): 20182325, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30890095

RESUMEN

Fish-jellyfish interactions are important factors contributing to fish stock success. Jellyfish can compete with fish for food resources, or feed on fish eggs and larvae, which works to reduce survivorship and recruitment of fish species. However, jellyfish also provide habitat and space for developing larval and juvenile fish which use their hosts as means of protection from predators and feeding opportunities, helping to reduce fish mortality and increase recruitment. Yet, relatively little is known about the evolutionary dynamics and drivers of such associations which would allow for their more effective incorporation into ecosystem models. Here, we found that jellyfish association is a probable adaptive anti-predator strategy for juvenile fish, more likely to evolve in benthic (fish living on the sea floor), benthopelagic (fish living just above the bottom of the seafloor), and reef-associating species than those adapted to other marine habitats. We also found that jellyfish association likely preceded the evolution of a benthic, benthopelagic, and reef-associating lifestyle rather than its evolutionary consequence, as we originally hypothesized. Considering over two-thirds of the associating fish identified here are of economic importance, and the wide-scale occurrence and diversity of species involved, it is clear the formation of fish-jellyfish associations is an important but complex process in relation to the success of fish stocks globally.


Asunto(s)
Ecosistema , Peces/fisiología , Cadena Alimentaria , Escifozoos/fisiología , Animales
7.
Rapid Commun Mass Spectrom ; 33(21): 1652-1659, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31250473

RESUMEN

RATIONALE: Stable isotopes of carbon and nitrogen have proved to be valuable tools for researchers working across the different subfields of ecology. However, the chemical pretreatment of samples prior to analytical determination of stable isotope ratios can influence the results, and therefore conclusions regarding the ecology of the taxon or system under study. Here, we determined the effect of vapor acidification with concentrated HCl on the δ13 C and δ15 N values of particulate organic matter (POM), which are commonly used as baselines for studies of trophic ecology, or to understand oceanographic patterns. METHODS: Samples of marine POM were obtained along a large-scale latitudinal gradient (ca 3000 km) along the Chilean coast, along with a range of oceanographic variables thought to potentially influence inorganic carbon at each sampling location. A random subset of 50 samples was divided into two parts: one acidified by HCl fumigation treatment, and the other acting as a control. We compared paired differences in δ13 C and δ15 N values measured by continuous flow isotope ratio mass spectrometry and used a model selection approach to examine which oceanographic factor best explained shifts in values following acid treatment. RESULTS: Acidification resulted in statistically significant reductions in both δ13 C and δ15 N values, but the effect was relatively small. The model that best explained the differences between acidified and non-acidified δ13 C values included depth, salinity and sea-surface temperature at the sampling point. A regression of acidified on non-acidified δ13 C values shows that the treatment effect was strongest on samples more depleted in 13 C. CONCLUSIONS: The differences between δ13 C and δ15 N values in acidified and non-acidified samples are linear and predictable. This implies that the nature of the POM and its possible alteration during the acid treatment are important factors that support the reliable determination of the values of δ13 C and δ15 N of POM.

8.
BMC Evol Biol ; 18(1): 14, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402230

RESUMEN

BACKGROUND: Marine threespine sticklebacks colonized and adapted to brackish and freshwater environments since the last Pleistocene glacial. Throughout the Holarctic, three lateral plate morphs are observed; the low, partial and completely plated morph. We test if the three plate morphs in the brackish water Lake Engervann, Norway, differ in body size, trophic morphology (gill raker number and length), niche (stable isotopes; δ15N, δ13C, and parasites (Theristina gasterostei, Trematoda spp.)), genetic structure (microsatellites) and the lateral-plate encoding Stn382 (Ectodysplasin) gene. We examine differences temporally (autumn 2006/spring 2007) and spatially (upper/lower sections of the lake - reflecting low versus high salinity). RESULTS: All morphs belonged to one gene pool. The complete morph was larger than the low plated, with the partial morph intermediate. The number of lateral plates ranged 8-71, with means of 64.2 for complete, 40.3 for partial, and 14.9 for low plated morph. Stickleback δ15N was higher in the lower lake section, while δ13C was higher in the upper section. Stickleback isotopic values were greater in autumn. The low plated morph had larger variances in δ15N and δ13C than the other morphs. Sticklebacks in the upper section had more T. gasterostei than in the lower section which had more Trematoda spp. Sticklebacks had less T. gasterostei, but more Trematoda spp. in autumn than spring. Sticklebacks with few and short rakers had more T. gasterostei, while sticklebacks with longer rakers had more Trematoda. spp. Stickleback with higher δ15N values had more T. gasterostei, while sticklebacks with higher δ15N and δ13C values had more Trematoda spp. The low plated morph had fewer Trematoda spp. than other morphs. CONCLUSIONS: Trait-ecology associations may imply that the three lateral plate morphs in the brackish water lagoon of Lake Engervann are experiencing ongoing divergent selection for niche and migratory life history strategies under high gene flow. As such, the brackish water zone may generally act as a generator of genomic diversity to be selected upon in the different environments where threespine sticklebacks can live.


Asunto(s)
Ecosistema , Flujo Génico , Polimorfismo Genético , Aguas Salinas , Smegmamorpha/genética , Animales , Isótopos de Carbono/metabolismo , Geografía , Lagos , Modelos Lineales , Isótopos de Nitrógeno/metabolismo , Noruega , Conducta Predatoria , Smegmamorpha/anatomía & histología , Smegmamorpha/parasitología
9.
Antonie Van Leeuwenhoek ; 111(8): 1361-1374, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29744693

RESUMEN

The geological, hydrological and microbiological features of the Salar de Atacama, the most extensive evaporitic sedimentary basin in the Atacama Desert of northern Chile, have been extensively studied. In contrast, relatively little attention has been paid to the composition and roles of microbial communities in hypersaline lakes which are a unique feature in the Salar. In the present study biochemical, chemical and molecular biological tools were used to determine the composition and roles of microbial communities in water, microbial mats and sediments along a marked salinity gradient in Laguna Puilar which is located in the "Los Flamencos" National Reserve. The bacterial communities at the sampling sites were dominated by members of the phyla Bacteroidetes, Chloroflexi, Cyanobacteria and Proteobacteria. Stable isotope and fatty acid analyses revealed marked variability in the composition of microbial mats at different sampling sites both horizontally (at different sites) and vertically (in the different layers). The Laguna Puilar was shown to be a microbially dominated ecosystem in which more than 60% of the fatty acids at particular sites are of bacterial origin. Our pioneering studies also suggest that the energy budgets of avian consumers (three flamingo species) and dominant invertebrates (amphipods and gastropods) use minerals as a source of energy and nutrients. Overall, the results of this study support the view that the Salar de Atacama is a heterogeneous and fragile ecosystem where small changes in environmental conditions may alter the balance of microbial communities with possible consequences at different trophic levels.


Asunto(s)
Bacterias/genética , Microbiología del Agua , Bacterias/aislamiento & purificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Biodiversidad , Chile , Chloroflexi , Ecosistema , Sedimentos Geológicos/microbiología , Filogenia , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Salinidad
10.
Ecology ; 98(9): 2267-2272, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28632943

RESUMEN

Coastal marine upwelling famously supports elevated levels of pelagic biological production, but can also subsidize production in inshore habitats via pelagic-benthic coupling. Consumers inhabiting macroalgae-dominated rocky reef habitats are often considered to be members of a food web fuelled by energy derived from benthic primary production; conversely, they may also be subsidized by materials transported from pelagic habitats. Here, we used stable isotopes (δ13 C, δ15 N) to examine the relative contribution of pelagic and benthic materials to an ecologically and economically important benthivorous fish assemblage inhabiting subtidal macroalgae-dominated reefs along ~1,000 km of the northern Chilean coast where coastal upwelling is active. Fish were isotopically most similar to the pelagic pathway and Bayesian mixing models indicated that production of benthivorous fish was dominated (median 98%, range 69-99%) by pelagic-derived C and N. Although the mechanism by which these materials enter the benthic food web remains unknown, our results clearly highlight the importance of pelagic-benthic coupling in the region. The scale of this subsidy has substantial implications for our basic understanding of ecosystem functioning and the management of nearshore habitats in northern Chile and other upwelling zones worldwide.


Asunto(s)
Ecosistema , Peces/fisiología , Algas Marinas , Animales , Teorema de Bayes , Chile , Cadena Alimentaria
11.
BMC Evol Biol ; 16: 102, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27178328

RESUMEN

BACKGROUND: Studying how trophic traits and niche use are related in natural populations is important in order to understand adaptation and specialization. Here, we describe trophic trait diversity in twenty-five Norwegian freshwater threespine stickleback populations and their putative marine ancestor, and relate trait differences to postglacial lake age. By studying lakes of different ages, depths and distance to the sea we examine key environmental variables that may predict adaptation in trophic position and habitat use. We measured trophic traits including geometric landmarks that integrated variation in head shape as well as gillraker length and number. Trophic position (Tpos) and niche use (α) were estimated from stable isotopes (δ(13)C, δ(15)N). A comparison of head shape was also made with two North American benthic-limnetic species pairs. RESULTS: We found that head shape differed between marine and freshwater sticklebacks, with marine sticklebacks having more upturned mouths, smaller eyes, larger opercula and deeper heads. Size-adjusted gillraker lengths were larger in marine than in freshwater stickleback. Norwegian sticklebacks were compared on the same head shape axis as the one differentiating the benthic-limnetic North American threespine stickleback species pairs. Here, Norwegian freshwater sticklebacks with a more "limnetic head shape" had more and longer gillrakers than sticklebacks with "benthic head shape". The "limnetic morph" was positively associated with deeper lakes. Populations differed in α (mean ± sd: 0.76 ± 0.29) and Tpos (3.47 ± 0.27), where α increased with gillraker length. Larger fish had a higher Tpos than smaller fish. Compared to the ecologically divergent stickleback species pairs and solitary lake populations in North America, Norwegian freshwater sticklebacks had similar range in Tpos and α values, but much less trait divergences. CONCLUSIONS: Our results showed trait divergences between threespine stickleback in marine and freshwater environments. Freshwater populations diverged in trophic ecology and trophic traits, but trophic ecology was not related to the elapsed time in freshwater. Norwegian sticklebacks used the same niches as the ecologically divergent North American stickleback species pairs. However, as trophic trait divergences were smaller, and not strongly associated with the ecological niche, ecological adaptations along the benthic-limnetic axis were less developed in Norwegian sticklebacks.


Asunto(s)
Adaptación Fisiológica , Smegmamorpha/anatomía & histología , Aclimatación , Animales , Ecosistema , Femenino , Cabeza/anatomía & histología , Lagos , Masculino , América del Norte , Noruega , Fenotipo
13.
Ecology ; 95(2): 538-52, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24669746

RESUMEN

Climate change is increasing ambient temperatures in Arctic and subarctic regions, facilitating latitudinal range expansions of freshwater fishes adapted to warmer water temperatures. The relative roles of resource availability and interspecific interactions between resident and invading species in determining the outcomes of such expansions has not been adequately evaluated. Ecological interactions between a cool-water adapted fish, the perch (Perca fluviatilis), and the cold-water adapted European whitefish (Coregonus lavaretus), were studied in both shallow and deep lakes with fish communities dominated by (1) monomorphic whitefish, (2) monomorphic whitefish and perch, and (3) polymorphic whitefish and perch. A combination of stomach content, stable-isotope, and invertebrate prey availability data were used to identify resource use and niche overlap among perch, the trophic generalist large sparsely rakered (LSR) whitefish morph, and the pelagic specialist densely rakered (DR) whitefish morph in 10 subarctic lakes at the contemporary distribution limit of perch in northern Scandinavia. Perch utilized its putative preferred littoral niche in all lakes. LSR whitefish utilized both littoral and pelagic resources in monomorphic whitefish-dominated lakes. When found in sympatry with perch, LSR whitefish exclusively utilized pelagic prey in deep lakes, but displayed niche overlap with perch in shallow littoral lakes. DR whitefish was a specialist zooplanktivore, relegating LSR whitefish from pelagic habitats, leading to an increase in niche overlap between LSR whitefish and perch in deep lakes. Our results highlight how resource availability (lake depth and fish community) governs ecological interactions between native and invading species, leading to different outcomes even at the same latitudes. These findings suggest that lake morphometry and fish community structure data should be included in bioclimate envelope-based models of species distribution shifts following predicted climate change.


Asunto(s)
Adaptación Fisiológica , Frío , Ecosistema , Peces/fisiología , Lagos , Animales , Finlandia , Peces/clasificación , Especificidad de la Especie , Factores de Tiempo
14.
J Anim Ecol ; 83(6): 1501-12, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24738779

RESUMEN

Ecological systems are often characterized as stable entities. However, basal productivity in most ecosystems varies between seasons, particularly in subarctic and polar areas. How this variability affects higher trophic levels or entire food webs remains largely unknown, especially in these high-latitude regions. We undertook a year-long study of benthic (macroinvertebrate) and pelagic (zooplankton) resource availability, along with short (day/days: stomach content)-, medium (month: liver δ(13)C and δ(15)N isotopes)- and long-term (season: muscle δ(13)C and δ(15)N isotopes) assessments of resource use by a generalist fish, the European whitefish, in a deep, oligotrophic, subarctic lake in northern Europe. Due to the long ice-covered winter period, we expected to find general benthic reliance throughout the year, but also a seasonal importance of zooplankton to the diet, somatic growth and gonadal development of whitefish. Benthic and pelagic resource availability varied between seasons: peak littoral benthic macroinvertebrate density occurred in mid-winter, whereas maximum zooplankton density was observed in summer. Whitefish stomach content revealed a reliance on benthic prey items during winter and pelagic prey in summer. A seasonal shift from benthic to pelagic prey was evident in liver isotope ratios, but muscle isotope ratios indicated a year-round reliance on benthic macroinvertebrates. Whitefish activity levels as well as somatic and gonadal growth all peaked during the summer, coinciding with the zooplankton peak and the warmest water temperature. Stable isotopes of muscle consistently depicted the most important resource, benthic macroinvertebrates, whereas short-term indicators, that is, diet and stable isotopes of liver, revealed the seasonal significance of pelagic zooplankton for somatic growth and gonad development. Seasonal variability in resource availability strongly influences consumer growth and reproduction and may also be important in other ecosystems facing pronounced annual weather fluctuations.


Asunto(s)
Dieta , Conducta Alimentaria , Reproducción , Salmonidae/fisiología , Animales , Isótopos de Carbono/análisis , Femenino , Finlandia , Contenido Digestivo/química , Lagos , Hígado/química , Masculino , Músculos/química , Isótopos de Nitrógeno/análisis , Salmonidae/crecimiento & desarrollo , Estaciones del Año
15.
PeerJ ; 12: e17372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770096

RESUMEN

Quantifying the tropic position (TP) of an animal species is key to understanding its ecosystem function. While both bulk and compound-specific analyses of stable isotopes are widely used for this purpose, few studies have assessed the consistency between and within such approaches. Champsocephalus gunnari is a specialist teleost that predates almost exclusively on Antarctic krill Euphausia superba. This well-known and nearly constant trophic relationship makes C. gunnari particularly suitable for assessing consistency between TP methods under field conditions. In the present work, we produced and compared TP estimates for C. gunnari and its main prey using a standard bulk and two amino acid-specific stable isotope approaches (CSI-AA). One based on the difference between glutamate and phenylalanine (TPGlx-Phe), and the other on the proline-phenylalanine difference (TPPro-Phe). To do that, samples from C. gunnari, E. superba and four other pelagic invertebrate and fish species, all potential prey for C.gunnari, were collected off the South Orkney Islands between January and March 2019, analyzed using standard isotopic ratio mass spectrometry methods and interpreted following a Bayesian approach. Median estimates (CI95%) for C. gunnari were similar between TPbulk (3.6; CI95%: 3.0-4.8) and TPGlx-Phe(3.4; CI95%:3.2-3.6), and lower for TPPro-Phe (3.1; CI95%:3.0-3.3). TP differences between C. gunnari and E. superba were 1.4, 1.1 and 1.2, all compatible with expectations from the monospecific diet of this predator (ΔTP=1). While these results suggest greater accuracy for Glx-Phe and Pro-Phe, differences observed between both CSI-AA approaches suggests these methods may require further validation before becoming a standard tool for trophic ecology.


Asunto(s)
Cadena Alimentaria , Perciformes , Animales , Perciformes/metabolismo , Fenilalanina/análisis , Fenilalanina/metabolismo , Regiones Antárticas , Euphausiacea/química , Ecosistema , Teorema de Bayes , Ácido Glutámico/análisis , Ácido Glutámico/metabolismo , Prolina/análisis
16.
PLoS One ; 19(6): e0301900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935686

RESUMEN

Analysis of stable isotopes in consumers is used commonly to study their ecological and/or environmental niche. There is, however, considerable debate regarding how isotopic values relate to diet and how other sources of variation confound this link, which can undermine the utility. From the analysis of a simple, but general, model of isotopic incorporation in consumer organisms, we examine the relationship between isotopic variance among individuals, and diet variability within a consumer population. We show that variance in consumer isotope values is directly proportional to variation in diet (through Simpson indices), to the number of isotopically distinct food sources in the diet, and to the baseline variation within and among the isotope values of the food sources. Additionally, when considering temporal diet variation within a consumer we identify the interplay between diet turnover rates and tissue turnover rates that controls the sensitivity of stable isotopes to detect diet variation. Our work demonstrates that variation in the stable isotope values of consumers reflect variation in their diet. This relationship, however, can be confounded with other factors to the extent that they may mask the signal coming from diet. We show how simple quantitative corrections can recover a direct 1:1 correlation in some situations, and in others we can adjust our interpretation in light of the new understanding arising from our models. Our framework provides guidance for the design and analysis of empirical studies where the goal is to infer niche width from stable isotope data.


Asunto(s)
Dieta , Animales , Isótopos de Carbono/análisis , Isótopos/análisis
17.
Chemosphere ; 355: 141816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556184

RESUMEN

Over the last few decades, measurements of light stable isotope ratios have been increasingly used to answer questions across physiology, biology, ecology, and archaeology. The vast majority analyse carbon (δ13C) and nitrogen (δ15N) stable isotopes as the 'default' isotopes, omitting sulfur (δ34S) due to time, cost, or perceived lack of benefits and instrumentation capabilities. Using just carbon and nitrogen isotopic ratios can produce results that are inconclusive, uncertain, or in the worst cases, even misleading, especially for scientists that are new to the use and interpretation of stable isotope data. Using sulfur isotope values more regularly has the potential to mitigate these issues, especially given recent advancements that have lowered measurement barriers. Here we provide a review documenting case studies with real-world data, re-analysing different biological topics (i.e. niche, physiology, diet, movement and bioarchaeology) with and without sulfur isotopes to highlight the various strengths of this stable isotope for various applications. We also include a preliminary meta-analysis of the trophic discrimination factor (TDF) for sulfur isotopes, which suggest small (mean -0.4 ± 1.7 ‰ SD) but taxa-dependent mean trophic discrimination. Each case study demonstrates how the exclusion of sulfur comes at the detriment of the results, often leading to very different outputs, or missing valuable discoveries entirely. Given that studies relying on carbon and nitrogen stable isotopes currently underpin most of our understanding of various ecological processes, this has concerning implications. Collectively, these examples strongly suggest that researchers planning to use carbon and nitrogen stable isotopes for their research should incorporate sulfur where possible, and that the new 'default' isotope systems for aquatic science should now be carbon, nitrogen, and sulfur.


Asunto(s)
Carbono , Nitrógeno , Isótopos de Carbono , Isótopos de Nitrógeno , Isótopos de Azufre
18.
Mar Environ Res ; 199: 106541, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852493

RESUMEN

Non-indigenous species (NIS) have the potential to colonize and become established in a wide range of coastal habitats. Species with broad environmental tolerances can quickly adapt to local conditions and expand their niches along environmental gradients, and even colonize habitats with extreme abiotic conditions. Here we report and document the distribution of eight marine NIS (four seaweed and four invertebrate species) found in tidepools along a 3000 km latitudinal gradient along the Pacific coast of Chile (18.4°S to 41.9°S). The seaweed NIS Codium fragile, Capreolia implexa, Schottera nicaeensis and Mastocarpus latissimus were mostly distributed towards high latitudes (i.e., more southerly locations), where temperatures in tidepools were low. The invertebrate NIS Anemonia alicemartinae, Ciona robusta, Bugula neritina and Bugulina flabellata were more common towards low latitudes, where high temperatures were registered in the tidepools. Across the intertidal gradient, seaweed NIS were mostly found in pools in the mid and low intertidal zone, while invertebrate NIS occurred mostly in pools from the mid and upper intertidal zones. The realized niche spaces of NIS (based on the Outlying Mean Index, OMI) in the study area were mainly influenced by environmental conditions of temperature and salinity (along the latitudinal and intertidal gradients), while other tidepool characteristics (depth, surface area, exposition, and complexity) only had minor effects. Five of the eight NIS exhibited a realized niche space coinciding with the average tidepool environmental conditions, while marginal niches were occupied by species with affinities for specific temperatures and salinities along the latitudinal and intertidal gradients. Our results indicate that physiological tolerances to environmental factors play a fundamental role in the distribution of seaweed and invertebrate NIS in tidepools along the Chilean coast. This study confirms that tidepools offer suitable conditions for some seaweed and invertebrate NIS, potentially facilitating their invasion into new natural habitats.


Asunto(s)
Ecosistema , Especies Introducidas , Invertebrados , Algas Marinas , Animales , Chile , Algas Marinas/fisiología , Invertebrados/fisiología , Océano Pacífico , Temperatura
19.
Mol Ecol ; 22(3): 650-69, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23057963

RESUMEN

The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution.


Asunto(s)
Evolución Biológica , Cíclidos/anatomía & histología , Cíclidos/genética , Transcriptoma , Adaptación Biológica/genética , Animales , Isótopos de Carbono/análisis , Nicaragua , Isótopos de Nitrógeno/análisis , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN
20.
Mar Environ Res ; 192: 106178, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37776807

RESUMEN

Reflecting the intense coastal upwelling and high primary productivity characteristic of the Humboldt Current System (HCS), the northern coast of Chile supports a diverse and productive community of marine consumers, including worldwide important pelagic fisheries resources. Although marine mammals are relatively understudied in the region, recent studies have demonstrated that fin whale (Balaenoptera physalus) is the most frequently encountered whale species, and forages in these waters year-round. However, a current lack of information limits our understanding of whether fin whales actively feed and/or remain resident in these waters or whether whales are observed feeding as they migrate along this part of the Pacific. Here, we use stable isotope ratios of carbon, nitrogen and sulphur of fin whale skin samples collected in early summer 2020 (n = 18) and in late winter 2021 (n = 22) to examine evidence of temporal isotopic shifts that could provide information on potential migratory movements and to estimate likely consumption patterns of putative prey (i.e. zooplankton, krill, pelagic fishes and Pleuroncodes sp.). We also analysed prey items in fin whale faecal plumes (n = 8) collected during the study period. Stable isotope data showed significant differences in the isotopic values of fin whales from summer and winter. On average, summer individuals were depleted in 15N and 34S relative to those sampled during winter. Whales sampled in summer showed greater isotopic variance than winter individuals, with several showing values that were atypical for consumers from the HCS. During winter, fin whales showed far less inter-individual variation in stable isotope values, and all individuals had values indicative of prey consumption in the region. Analysis of both stable isotopes and faeces indicated that fin whales sighted off the Mejillones Peninsula fed primarily on krill (SIA median contribution = 32%; IRI = 65%) and, to a lesser extent, zooplankton (SIA zooplankton = 29%; IRI copepod = 33%). These are the first isotopic-based data regarding the trophic ecology of fin whales in the north of Chile. They provide evidence that fin whales are seasonally resident in the area, including individuals with values that likely originated outside the study area. The information presented here serves as a baseline for future work. It highlights that many aspects of the ecology of fin whales in the Humboldt Current and wider SE Pacific still need to be clarified.


Asunto(s)
Ballena de Aleta , Humanos , Animales , Chile , Ecología , Isótopos , Ballenas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA