Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Inherit Metab Dis ; 42(5): 839-849, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31111503

RESUMEN

Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by hemolytic anemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPIIle170Val/Ile170Val mice exhibit an approximately 85% reduction in TPI activity consistently across all examined tissues, which is a stronger average, but more consistent, activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPIIle170Val/Ile170Val mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that affects TPI activity in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/patología , Errores Innatos del Metabolismo de los Carbohidratos/patología , Dominio Catalítico/genética , Triosa-Fosfato Isomerasa/deficiencia , Triosa-Fosfato Isomerasa/genética , Anemia Hemolítica Congénita no Esferocítica/enzimología , Animales , Conducta Animal , Errores Innatos del Metabolismo de los Carbohidratos/enzimología , Modelos Animales de Enfermedad , Estabilidad de Enzimas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Multimerización de Proteína
2.
Mol Cell Proteomics ; 12(7): 1965-79, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23579186

RESUMEN

Gaining understanding of common complex diseases and their treatments are the main drivers for life sciences. As we show here, comprehensive protein set analyses offer new opportunities to decipher functional molecular networks of diseases and assess the efficacy and side-effects of treatments in vivo. Using mass spectrometry, we quantitatively detected several thousands of proteins and observed significant changes in protein pathways that were (dys-) regulated in diet-induced obesity mice. Analysis of the expression and post-translational modifications of proteins in various peripheral metabolic target tissues including adipose, heart, and liver tissue generated functional insights in the regulation of cell and tissue homeostasis during high-fat diet feeding and medication with two antidiabetic compounds. Protein set analyses singled out pathways for functional characterization, and indicated, for example, early-on potential cardiovascular complication of the diabetes drug rosiglitazone. In vivo protein set detection can provide new avenues for monitoring complex disease processes, and for evaluating preclinical drug candidates.


Asunto(s)
Hipoglucemiantes/farmacología , Obesidad/metabolismo , Tiazolidinedionas/farmacología , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa , Hipoglucemiantes/uso terapéutico , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Obesidad/tratamiento farmacológico , PPAR gamma/agonistas , Procesamiento Proteico-Postraduccional , Proteómica , Rosiglitazona , Salicilatos/farmacología , Tiazolidinedionas/uso terapéutico
3.
Br J Nutr ; 89(5): 597-606, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12720580

RESUMEN

The effects of fructans in the diet on the mucosal morphometry (height of villi, depth of the crypts, number of goblet cells), the thickness of the epithelial mucus layer and the histochemical composition of intestinal mucosubstances in the distal jejunum and the distal colon were investigated by comparing germ-free (GF) rats, rats harbouring Bacteroides vulgatus and Bifidobacterium longum (diassociated (DA) rats), and rats with a human faecal flora (HFA). The rats were fed either a commercial standard diet (ST) or ST + (50 g oligofructose (OF)-long-chain inulin (lcIN))/kg. Changes in total bacteria, bifidobacteria and Bacteroides-Prevotella in response to feeding these diets were investigated by fluorescent in situ hybridization with 16S rRNA-targeted probes both in intestinal contents (lumen bacteria) and tissue sections (mucosa-associated bacteria). The OF-lcIN-containing diet resulted in higher villi and deeper crypts in bacteria-associated, but not in GF rats. In DA and HFA rats, the colonic epithelial mucus layer was thicker and the numbers of the goblet cells were greater than in GF rats. These effects were enhanced by the OF-lcIN-containing diet. In both dietary groups, bacterial colonization of GF rats caused an increase in neutral mucins in the distal jejunum and colon. Bacteria-associated rats had more acidic mucins in the colon than GF rats, and the OF-lcIN-containing diet stimulated sulfomucins as the predominant type of acidic mucins, while sialomucins dominated in the ST-fed groups. The number of mucosa-associated bifidobacteria detected in the colon of DA and HFA rats was greater with OF-lcIN than ST (4.9 and 5.4 v. 3.5 and 4.0 log10/mm2 mucosal surface respectively), whereas the number of luminal bifidobacteria was only affected by fructans in DA rats. Bacteroides did not differ between the groups. The stabilisation of the gut mucosal barrier, either by changes in the mucosal architecture itself, in released mucins or by stimulation of mucosal bifidobacteria with fructans, could become an important topic in the treatment and prophylaxis of gastrointestinal disorders and health maintenance.


Asunto(s)
Bifidobacterium , Dieta , Fructanos/administración & dosificación , Mucosa Intestinal/efectos de los fármacos , Mucinas/análisis , Análisis de Varianza , Animales , Bacteroides , Colon , ADN Bacteriano/análisis , Vida Libre de Gérmenes , Histocitoquímica/métodos , Hibridación Fluorescente in Situ , Mucosa Intestinal/anatomía & histología , Mucosa Intestinal/microbiología , Yeyuno , Masculino , Modelos Animales , Ratas , Ratas Wistar , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA