Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37804831

RESUMEN

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Asunto(s)
Alphavirus , Animales , Humanos , Fiebre Chikungunya , Virus Chikungunya/química , Mamíferos , Receptores Virales/metabolismo
2.
Cell ; 182(3): 744-753.e4, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32553273

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of human infections. One limitation to the evaluation of potential therapies and vaccines to inhibit SARS-CoV-2 infection and ameliorate disease is the lack of susceptible small animals in large numbers. Commercially available laboratory strains of mice are not readily infected by SARS-CoV-2 because of species-specific differences in their angiotensin-converting enzyme 2 (ACE2) receptors. Here, we transduced replication-defective adenoviruses encoding human ACE2 via intranasal administration into BALB/c mice and established receptor expression in lung tissues. hACE2-transduced mice were productively infected with SARS-CoV-2, and this resulted in high viral titers in the lung, lung pathology, and weight loss. Passive transfer of a neutralizing monoclonal antibody reduced viral burden in the lung and mitigated inflammation and weight loss. The development of an accessible mouse model of SARS-CoV-2 infection and pathogenesis will expedite the testing and deployment of therapeutics and vaccines.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Betacoronavirus/inmunología , Infecciones por Coronavirus/terapia , Modelos Animales de Enfermedad , Neumonía Viral/terapia , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Femenino , Células HEK293 , Humanos , Inmunización Pasiva/métodos , Pulmón/metabolismo , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , SARS-CoV-2 , Transducción Genética , Células Vero , Carga Viral/inmunología
3.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931734

RESUMEN

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Asunto(s)
Infecciones por Coronavirus/inmunología , Inmunogenicidad Vacunal , Neumonía Viral/inmunología , Vacunas Virales/inmunología , Adenoviridae/genética , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19 , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Femenino , Células HEK293 , Humanos , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Pandemias , Neumonía Viral/patología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Vacunas Virales/administración & dosificación
4.
Nature ; 584(7821): 443-449, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32668443

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited2,3. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (SRBD) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the SRBD, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Betacoronavirus/química , Unión Competitiva , COVID-19 , Línea Celular , Reacciones Cruzadas , Modelos Animales de Enfermedad , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Femenino , Humanos , Macaca mulatta , Masculino , Ratones , Persona de Mediana Edad , Pruebas de Neutralización , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Profilaxis Pre-Exposición , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
5.
Med Vet Entomol ; 38(1): 1-12, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37815308

RESUMEN

The most economically significant ectoparasites in the tropics and subtropics are ixodid ticks, especially Rhipicephalus annulatus and Rhipicephalus sanguineus. Years of extensive use of the readily available acaricides have resulted in widespread resistance development in these ticks, as well as negative environmental consequences. Benzyl alcohol (BA) has been frequently used to treat pediculosis and scabies, and it may be an effective alternative to commonly used acaricides. The main aim of the present study was to evaluate the acaricide activity of BA and its combination with the regularly used chemical acaricides against R. annulatus and R. sanguineus. Different concentrations of BA alone and in combination with deltamethrin, cypermethrin and chlorpyrifos were tested in vitro against adult and larvae of both tick species. The results showed that BA is toxic to R. annulatus and R. sanguineus larvae, with 100% larval mortality at concentrations of ≥50 mL/L, and LC50 and LC90 attained the concentrations of 19.8 and 33.8 mL/L for R. annulatus and 18.8 and 31.8 mL/L for R. sanguineus, respectively. Furthermore, BA in combination with deltamethrin, cypermethrin and chlorpyrifos exhibited synergistic factors of 2.48, 1.26 and 1.68 against R. annulatus larvae and 1.64, 11.1 and 1.14 against R. sanguineus larvae for deltamethrin + BA, cypermethrin + BA and chlorpyrifos + BA, respectively. BA induced 100% mortality in adult R. annulatus at concentrations of ≥250 mL/L with LC50 and LC90 reached the concentrations of 111 and 154 mL/L, respectively. Additionally, BA had ovicidal activity causing complete inhibition of larval hatching at 100 mL/L. The combination of BA with deltamethrin and cypermethrin increased acetylcholinesterase inhibition, whereas the combination of BA with chlorpyrifos decreased glutathione (GSH) activity and malondialdehyde levels. In the field application, the combination of BA 50 mL/L and deltamethrin (DBA) resulted in a significant reduction in the percentage of ticks by 30.9% 28 days post-treatment when compared with groups treated with deltamethrin alone. In conclusion, BA causes mortality in laboratory and field studies alone and in combination with cypermethrin or deltamethrin. BA can be used for control of ticks of different life stages, that is, eggs and larvae, through application to the ground.


Asunto(s)
Acaricidas , Cloropirifos , Nitrilos , Piretrinas , Rhipicephalus sanguineus , Rhipicephalus , Animales , Acaricidas/farmacología , Alcohol Bencilo/farmacología , Cloropirifos/farmacología , Acetilcolinesterasa/farmacología , Larva
6.
Med Vet Entomol ; 37(1): 63-75, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36054616

RESUMEN

The current study was conducted to investigate the efficacy and stability of D-limonene (DL) and its nanoemulsion (DLN) against pigeon feather lice (Columbicola columbae) and their mode of action. DL pure form and DLN were prepared and characterized freshly and after storage for 50 days. In vitro bioassay on live lice was conducted with different concentrations of DL, DLN, and deltamethrin (DM). The results revealed significant mortality rates in the DL-, DLN-, DM-treated groups when compared with the control (p < 0.05). The scanning electron micrographs of lice treated with DL and DLN revealed collapsed bodies with destruction in the cuticle of the mouthparts and damaged antennae. The 50 days stored DLN showed stability in their effectiveness when compared with the freshly prepared formulation. DL and DLN caused significant inhibition (p ≤ 0.05) in acetylcholinesterase activity (AchE). Malondialdehyde level (MDA) was significantly increased while glutathione was significantly decreased in DL- and DLN-treated lice. In conclusion, DL and DLN have significant lousicidal activities. DLN showed better stability than DL after storage for 50 days. In addition, the mode of action of DL may associate with its effect on the cuticle of the lice body, inhibition of AchE, and increasing oxidative stress in the treated lice.


Asunto(s)
Enfermedades de las Aves , Ischnocera , Infestaciones por Piojos , Animales , Limoneno , Acetilcolinesterasa , Columbidae , Infestaciones por Piojos/veterinaria
7.
Molecules ; 28(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38067462

RESUMEN

Tribolium castaneum is a damaging pest of stored grains, causing significant losses and secreting lethal quinones, which render the grains unfit for human consumption. Chemical insecticides are the most commonly used approach for control; however, they create insecticide resistance and affect the health of humans, animals, and the environment. As a result, it is critical to find an environmentally friendly pest-management strategy. In this study, two naturally occurring chemicals, benzyl alcohol (BA) and benzoyl benzoate (BB), were investigated for insecticidal activity against T. castaneum using different assays (impregnated-paper, contact toxicity, fumigant, and repellency assays). The results showed that BA had a significant insecticidal effect, with the LC50 achieved at a lower concentration in the direct-contact toxicity test (1.77%) than in the impregnated-paper assay (2.63%). BB showed significant effects in the direct-contact toxicity test, with an LC50 of 3.114%, and a lower toxicity in the impregnated-paper assay, with an LC50 of 11.75%. Furthermore, BA exhibited significant fumigant toxicity against T. castaneum, with an LC50 of 6.72 µL/L, whereas BB exhibited modest fumigant toxicity, with an LC50 of 464 µL/L. Additionally, at different concentrations (0.18, 0.09, 0.045, and 0.0225 µL/cm2), BA and BB both showed a notable and potent repelling effect. BA and BB significantly inhibited acetylcholinesterase, reduced glutathione (GSH), and increased malondialdehyde (MDA) in treated T. castaneum. This is the first report of BA insecticidal activity against the red flour beetle. Also, the outcomes of various assays demonstrated that the application of BA induces a potent bio-insecticidal effect. BA may be a promising eco-friendly alternative to control T. castaneum due to its safety and authorization by the EFSA (European Food Safety Authority).


Asunto(s)
Escarabajos , Repelentes de Insectos , Insecticidas , Aceites Volátiles , Tribolium , Animales , Humanos , Acetilcolinesterasa/farmacología , Aceites Volátiles/farmacología , Benzoatos/farmacología , Insecticidas/farmacología , Repelentes de Insectos/farmacología , Alcoholes Bencílicos
8.
J Immunol ; 205(4): 915-922, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32591393

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for millions of infections and hundreds of thousands of deaths globally. There are no widely available licensed therapeutics against SARS-CoV-2, highlighting an urgent need for effective interventions. The virus enters host cells through binding of a receptor-binding domain within its trimeric spike glycoprotein to human angiotensin-converting enzyme 2. In this article, we describe the generation and characterization of a panel of murine mAbs directed against the receptor-binding domain. One mAb, 2B04, neutralized wild-type SARS-CoV-2 in vitro with remarkable potency (half-maximal inhibitory concentration of <2 ng/ml). In a murine model of SARS-CoV-2 infection, 2B04 protected challenged animals from weight loss, reduced lung viral load, and blocked systemic dissemination. Thus, 2B04 is a promising candidate for an effective antiviral that can be used to prevent SARS-CoV-2 infection.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Mapeo Epitopo , Femenino , Células HEK293 , Humanos , Epítopos Inmunodominantes/inmunología , Ratones , Ratones Endogámicos C57BL , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Transfección , Células Vero
9.
Exp Appl Acarol ; 88(2): 209-224, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36348156

RESUMEN

Essential oils of Origanum majorana and Satureja thymbra as well as carvacrol are natural products that are known to have potent antioxidant activities. The current study was designed to investigate the role of the antioxidant properties of these natural products in their acaricidal activities against Rhipicephalus annulatus larvae. The synergistic and/or antagonistic effects of the addition of vitamins E and C and hydrogen peroxide (H2O2) to these natural products were also evaluated. Larval packet tests were used to evaluate the acaricidal activities against the larvae of R. annulatus. The antioxidant effectiveness of these products was determined by a DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay. The addition of vitamin E at 100 mg/mL to O. majorana and S. thymbra decreased the concentrations required to achieve the death of half of the larvae (LC50) to 0.44 and 0.47%, respectively. The combination of O. majorana and S. thymbra attained the LC50 at 1.54% which was decreased to 0.69% after addition of vitamin E. Also, the addition of vitamin E to carvacrol reduced the LC50 to 0.27%. The total antioxidant activity of these natural products increased significantly in presence of vitamin E. The addition of H2O2 inhibited the acaricidal activity of all tested materials, especially at low concentrations. All treatments induced an increase in lipid peroxidation, whereas carvacrol-treated larvae revealed the lowest values for the superoxide dismutase. Glutathione peroxidase and catalase activity decreased in larvae treated with S. thymbra combined with vitamin E. In conclusion, the addition of vitamins E and C increased the acaricidal activities of the tested compounds, whereas the addition of H2O2 decreased these activities. The antioxidant activities of essential oils and their active components may play an important role in mediating their acaricidal activities.


Asunto(s)
Acaricidas , Productos Biológicos , Aceites Volátiles , Rhipicephalus , Animales , Acaricidas/farmacología , Acaricidas/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Larva , Vitamina E/farmacología , Productos Biológicos/farmacología , Vitaminas/farmacología
11.
J Gen Virol ; 98(4): 749-753, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28086071

RESUMEN

Bovine adenovirus (AdV) type 3 (BAdV-3) E1 region shares functional homology with E1 of human AdV type C5. Sequence analysis of the BAdV-3 E1 region revealed the presence of a novel 155R ORF that is not observed in other AdVs, on the lower strand antiparallel to a portion of the E1B region. The 155R gene products in BAdV-3-infected cells were identified by Northern blot, reverse transcriptase PCR followed by sequencing and Western blot analysis using the155R-specific antibody. 155R seems to be a late protein and is present in purified BAdV-3 particles. Replication kinetics of BAdV mutants with either one (BAdV/155R/mt1) or two (BAdV/155R/mt2) stop codons in the 155R ORF were comparable to those of BAdV-3, indicating that 155R is not essential for virus replication in cell culture. These results suggest that 155R-deleted BAdV-3 vectors could be generated in a cell line that fully complements BAdV-3 E1 functions.


Asunto(s)
Adenoviridae/genética , Adenoviridae/fisiología , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Animales , Northern Blotting , Western Blotting , Bovinos , Análisis Mutacional de ADN , Perfilación de la Expresión Génica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
12.
Neotrop Entomol ; 53(4): 972-983, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38724884

RESUMEN

The house fly, Musca domestica (Linnaeus) (Diptera: Muscidae), is a significant threat to human and animal health and is also resistant to a variety of insecticides. Plant-derived benzoates are known to have insecticidal activities against various insects. In this study, the larvicidal, pupicidal, and adulticidal activities of benzoate derivatives (benzyl alcohol BA, benzyl benzoate BB, and methyl benzoate MB) were assessed and investigated for their effects on larval structure and acetylcholinesterase activity. Six concentrations (2.5 to 100 mg/mL) of benzoate derivatives were applied to larvae and pupae through the residual film method and topical application, respectively. Meanwhile, concentrations from 0.625 to 50 mg/L air were applied to adult flies through a fumigation assay. BA and MB achieved promising results against larvae with LC50 values of 10.90 and 11.53 mg/mL, respectively. Moreover, BA killed 100% of the larvae at a concentration of 25 mg/mL, and MB achieved the same effect at a concentration of 50 mg/mL. Regarding the pupicidal activity, MB showed a percentage inhibition rate (PIR) of 100% at a concentration of 100 mg/mL, while the same effect was achieved by BA at a concentration of 50 mg/mL. Meanwhile, BB did not show any effect on the larvae or pupae at any of the tested concentrations. Moreover, the scanning microscopy observations on the treated larvae by BA and MB estimated flaccid and deformity in the larva body with a shrunken cuticle. Additionally, both BA and MB suppress nerve signal transmission by inhibiting acetylcholinesterase. In conclusion, the results of this study indicate that BA and MB may be useful in control housefly populations. These substances cause severe muscular relaxation and deformities in insects.


Asunto(s)
Benzoatos , Moscas Domésticas , Insecticidas , Larva , Pupa , Moscas Domésticas/efectos de los fármacos , Animales , Pupa/efectos de los fármacos , Larva/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Acetilcolinesterasa/metabolismo
13.
Vet Parasitol ; 327: 110112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38246120

RESUMEN

The present study evaluated, in laboratory and field, the efficacy and safety of formulations of Pelargonium graveolens (geranium - G), Origanum majorana (oregano - O) commercial essential oils (EO) and thymol (T) to control of Rhipicephalus sanguineus sensu lato. In the laboratory, three formulas (A: 2% tween 80%, B: powder and C: nanoemulsion) by a mixture of these components (GOT) were prepared and evaluated, and the best one was used to assess its safety and field application against R. sanguineus s. l. on naturally infested dogs. Besides the major compounds of the EO used were identified. The results of the lab study showed that formula A (2.5 g of each G + O + T + 2% tween 80 to complete 100 mL) was significantly more effective than the other two formulas tested and exhibited highly effective adulticidal, larvicidal, and ovicidal activity against R. sanguineus s.l. Significant LC50 and LC90 values of GOT were evaluated (13.4 and 21.5 mg/mL, respectively) for the adulticidal activity, (2.81 and 4.46 mg/mL, respectively) for ovicidal activity and (2.44 and 4.45 mg/mL, respectively) for larvicidal activity. The safety of formula A has been proven by the absence of its cytotoxicity on a cell line of human epidermoid carcinoma. Citronella and carvacrol were the major compounds identified in the commercial essential oils of P. graveolens and O. majorana, respectively. Formula A was used in a field control trial for almost 8 months, during the tick infestation season (April to November, 2022). Fourteen naturally infested dogs were divided into two groups, each with seven dogs. One group received formula A spraying five times during an experiment that continued for 8 months, while the other group received treatment with commercially available malathion acaricide. The animals were sprayed on five occasions throughout the experiment (April, June, July, August, and September). The results showed a substantial percentage of effectiveness after the first application of formula A with a 99.3% reduction in tick count at day 28 post-application (PA). In the case of severe infestation 60 days after the first application of formula A (more than 180 ticks per dog), the second application was done, achieving an efficacy of 54.9% at day 3 PA, so an emergency spray was done at day 5 PA to combat the rest of the tick infestation, achieving efficacy of 99% after 3 days. Consequently, a regular spray (third, fourth, and fifth application) was done every 35 days. This regular spray revealed 100% effectiveness at 14 days PA. Biochemical parameters of treated dogs were evaluated to confirm the safety of formula A. Creatinine, ALT, and albumin of the dogs treated with formula A were within the normal range of dogs, while urea and AST were higher than the normal range. In conclusion, formula A can safely treat R. sanguineus s.l. infestations in dogs with regular application every 5 weeks.


Asunto(s)
Enfermedades de los Perros , Geranium , Aceites Volátiles , Origanum , Rhipicephalus sanguineus , Infestaciones por Garrapatas , Perros , Humanos , Animales , Timol/farmacología , Infestaciones por Garrapatas/tratamiento farmacológico , Infestaciones por Garrapatas/prevención & control , Infestaciones por Garrapatas/veterinaria , Polisorbatos/farmacología , Aceites Volátiles/farmacología , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/prevención & control
14.
Microsc Res Tech ; 87(8): 1912-1925, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38558483

RESUMEN

Cryptosporidiosis is a global health problem threats life of immunocompromised patients. Allium sativum (A. sativum) is one of the therapeutic options for cryptosporidiosis. This study develops green synthesized ZnO-NPs based on A. sativum extract, and assesses its therapeutic application in treating experimental cryptosporidiosis in immunosuppressed mice. FTIR, scanning electron microscopy, and zeta analyzer were used for characterization of bio ZnO-NPs. The morphology of prepared materials appeared as sponge with many pores on the whole surface that allows the feasibility of bio ZnO-NPs for different biological activities. Its structural analysis was highly stabilized with negative charge surface which indicated for well distribution into the parasite matrix. Twenty-five immunosuppressed Cryptosporidium parvum infected mice, classified into 5 groups were sacrificed at 21th day after infection with evaluation of parasitological, histopathological, oxidative, and proinflammatory biomarkers. Treated mice groups with 50 and 100 mg/kg of AS/ZnO-NPs showed a highly significant decline (79.9% and 83.23%, respectively) in the total number of expelled oocysts. Both doses revealed actual amelioration of the intestinal, hepatic, and pulmonary histopathological lesions. They also significantly produced an increase in GSH values and improved the changes in NO and MDA levels, and showed high anti-inflammatory properties. This study is the first to report green synthesis of ZnO/A. sativum nano-composite as an effective therapy in treating cryptosporidiosis which gave better results than using A. sativum alone. It provides an economical and environment-friendly approach towards novel delivery synthesis for antiparasitic applications. RESEARCH HIGHLIGHTS: Green synthesis of ZnO-NPs was developed using A. sativum extract. The morphology of prepared ZnO-NPs appeared as sponge with many pores on SEM The study evaluates its therapeutic efficacy against murine cryptosporidiosis The green synthesized ZnO-NPs significantly reduced percent of oocyst shedding, improved the pathological changes, and showed high antioxidant and anti-inflammatory potentials.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Ajo , Tecnología Química Verde , Óxido de Zinc , Animales , Óxido de Zinc/uso terapéutico , Óxido de Zinc/farmacología , Óxido de Zinc/química , Criptosporidiosis/tratamiento farmacológico , Ratones , Ajo/química , Tecnología Química Verde/métodos , Cryptosporidium parvum/efectos de los fármacos , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Modelos Animales de Enfermedad , Oocistos/efectos de los fármacos
15.
Nat Commun ; 14(1): 3897, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400446

RESUMEN

Antibody discovery is bottlenecked by the individual expression and evaluation of antigen-specific hits. Here, we address this bottleneck by developing a workflow combining cell-free DNA template generation, cell-free protein synthesis, and binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to evaluate 135 previously published antibodies targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including all 8 antibodies previously granted emergency use authorization for coronavirus disease 2019 (COVID-19), and demonstrate identification of the most potent antibodies. We also evaluate 119 anti-SARS-CoV-2 antibodies from a mouse immunized with the SARS-CoV-2 spike protein and identify neutralizing antibody candidates, including the antibody SC2-3, which binds the SARS-CoV-2 spike protein of all tested variants of concern. We expect that our cell-free workflow will accelerate the discovery and characterization of antibodies for future pandemics and for research, diagnostic, and therapeutic applications more broadly.


Asunto(s)
COVID-19 , Animales , Humanos , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Anticuerpos Antivirales
16.
J Med Entomol ; 60(1): 148-158, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36398898

RESUMEN

This study investigated the safety and efficacy of two forms of D-limonene (DL) against Columbicola columbae (pigeon feather lice); pure and a nanoemulsion formulation (DLN). The cell cytotoxicity of the prepared forms of DL/DLN was investigated using skin cell lines. In vitro and ex vivo bioassays were applied on lice. The ex vivo bioassay was done on cut feathers containing lice eggs. The in vivo experiment was conducted on pigeons naturally infested by lice. The infested pigeons were treated with DL, DLN, or deltamethrin (D) as a positive control. Both forms of D-limonene were found to be safe when applied to the normal human skin fibroblast cell line, but DLN was toxic to skin cell carcinoma. The in vitro and ex vivo results of both DL and DLN forms were similar. All eggs treated with DL, DLN, and D failed to hatch (100%). The in vivo results showed complete elimination of lice 24 h post-treatment (PT), and biochemical analysis showed that the treated birds retained normal kidney and liver functions. Treated groups also showed improved productivity in the 4 months PT. In conclusion, DL and DLN are safe and effective in controlling feather lice infestation in pigeons and successful treatment encourages bird productivity.


Asunto(s)
Enfermedades de las Aves , Infestaciones por Piojos , Humanos , Animales , Columbidae , Limoneno
17.
Microorganisms ; 11(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985306

RESUMEN

Carvacrol is a monoterpenoid phenol found in many essential oils that has antibacterial, antifungal and antiparasitic activities. Drug loaded-invasome systems are used to deliver drugs utilizing nanoparticles to improve bioavailability, efficacy, and drug release duration. As a result, the present study developed carvacrol-loaded invasomes and evaluated their acaricidal effect against Rhipicephalus annulatus (cattle tick) and Rhipicephalus sanguineus (dog tick). Carvacrol loaded-invasome (CLI) was prepared and characterized using UV/Vis spectrophotometer, zeta potential measurements, Scanning Transmission Electron Microscopy (STEM), Fourier Transform Infrared (FT-IR) Spectroscopy, and Differential Scanning Calorimetry Analysis. CLI (5%) induced significant mortality (100%) in R. annulatus adult ticks with LC50 of 2.60%, whereas the LC50 of pure carvacrol was 4.30%. Carvacrol and CLI were shown to have a significant larvicidal action on both tick species, with LC50s of 0.24 and 0.21% against R. annulatus and 0.27 and 0.23% against R. sanguineus, respectively. Carvacrol and CLI (5%) induced significant repellent activities for 24 h against R. annulatus and R. sanguineus, as evidenced by the rod method and the petri-dish selective area choice method, respectively. High-performance liquid chromatography (HPLC) demonstrated that the CLI form had 3.86 times the permeability of pure carvacrol. Moreover, carvacrol and CLI inhibited acetylcholinesterase activity and decreased glutathione and malonedealdehyde levels in the treated ticks. In conclusion, invasomes significantly improved adulticidal and repellency activities of carvacrol against both tick species.

18.
Acta Parasitol ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015315

RESUMEN

PURPOSE: Ticks infestation has a negative impact against human and animal health through blood sucking, transmission of blood-borne diseases and also caused economic losses. METHODS: In the present study the adulticidal, ovicidal and larvicidal activity of D-limonene nanoemulsion (DLN) were evaluated against two tick species; Rhipicephalus annulatus and Rhipicephalus sanguineus. Nanoemulsion form of D-limonene was prepared, and its characteristics were evaluated using a UV spectrophotometer and zeta droplet size measurement. Acetylcholinesterase activity was determined. RESULTS: The results revealed significant adulticidal effect with low LC50 and LC90 for D-limonene pure form (DL) against both adult tick spp. (R. annulatus and R. sanguineus) ((0.958 and 1.559%) and (2.26 and 3.51%), respectively). DLN LC50 and LC90 values were ((1.277 and 2.396) and (3.97 and 7.28), respectively) against R. annulatus and R. sanguineus, respectively. DL and DLN showed significant ovicidal effect against R. sanguineus at high concentrations (10 and 5%). In larval packet test, LC50 and LC90 values of DL were ((1.53 and 2.22%) and (6.81 and 12.07%), respectively) against R. annulatus and R. sanguineus, respectively, while LC50 and LC90 values of DLN were ((6.48 and 11.26%) and (7.82 and 13.59%), respectively) against R. annulatus and R. sanguineus, respectively. Significant acetylcholinesterase inhibition percentage was detected for both ticks spp. which treated by DL and DLN. CONCLUSION: Pure DL is more effective than DLN form against R. annulatus and R. sanguineus.

19.
Pol J Microbiol ; 72(3): 269-275, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37668434

RESUMEN

Human Cytomegalovirus (HCMV) is a leading healthcare problem associated with stillbirth and congenital abnormalities. Determining the seroprevalence and the possible risk factors related to HCMV infections may be a cornerstone in preventing its complications. This cross-sectional study was conducted in Kassala and River Nile States to determine the seroprevalence and risk factors associated with HCMV infection in pregnant women. One hundred eighty-four (n = 184) blood specimens were collected from pregnant women from February 2018 to January 2020. Enzyme-linked immunosorbent assay (ELISA) was used to detect HCMV-specific IgG and IgM antibodies. Socio-demographical characteristics of the women were collected using structured questionnaires. The results showed that HCMV IgG was detected in 170 (92.4%) of the blood specimens, and IgM was detected in 29/93 (31.2%). There was a significant relationship between the history of miscarriage and the presence of IgG and IgM with a p-value = 0.001 and between HCMV IgM and gestational stage (p-value = 0.028). The study found a strikingly high seroprevalence of HCMV infections among pregnant women in the investigated States. This high percentage of illiterate housewives living in rural areas makes it possible to reduce the incidence of HCMV infection in pregnant women by improving their knowledge, attitude, and practice regarding the route of viral transmission, which may reflect in lowering the rate of congenital diseases in their infants.


Asunto(s)
Infecciones por Citomegalovirus , Mujeres Embarazadas , Embarazo , Lactante , Humanos , Femenino , Sudán , Estudios Transversales , Estudios Seroepidemiológicos , Infecciones por Citomegalovirus/epidemiología , Anticuerpos Antivirales , Inmunoglobulina G , Inmunoglobulina M
20.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693434

RESUMEN

Increasing evidence points to the microbial exposome as a critical factor in maturing and shaping the host immune system, thereby influencing responses to immune challenges such as infections or vaccines. To investigate the effect of early-life viral exposures on immune development and vaccine responses, we inoculated mice with six distinct viral pathogens in sequence beginning in the neonatal period, and then evaluated their immune signatures before and after intramuscular or intranasal vaccination against SARS-CoV-2. Sequential viral infection drove profound changes in all aspects of the immune system, including increasing circulating leukocytes, altering innate and adaptive immune cell lineages in tissues, and markedly influencing serum cytokine and total antibody levels. Beyond these immune responses changes, these exposures also modulated the composition of the endogenous intestinal microbiota. Although sequentially-infected mice exhibited increased systemic immune activation and T cell responses after intramuscular and intranasal SARS-CoV-2 immunization, we observed decreased vaccine-induced antibody responses in these animals. These results suggest that early-life viral exposures are sufficient to diminish antibody responses to vaccination in mice, and highlight their potential importance of considering prior microbial exposures when investigating vaccine responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA