Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L931-L942, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32130033

RESUMEN

The human airway is protected by an efficient innate defense mechanism that requires healthy secretion of airway surface liquid (ASL) to clear pathogens from the lungs. Most of the ASL in the upper airway is secreted by submucosal glands. In cystic fibrosis (CF), the function of airway submucosal glands is abnormal, and these abnormalities are attributed to anomalies in ion transport across the epithelia lining the different sections of the glands that function coordinately to produce the ASL. However, the ion transport properties of most of the anatomical regions of the gland have never been measured, and there is controversy regarding which segments express CFTR. This makes it difficult to determine the glandular abnormalities that may contribute to CF lung disease. Using a noninvasive, extracellular self-referencing ion-selective electrode technique, we characterized ion transport properties in all four segments of submucosal glands from wild-type and CFTR-/- swine. In wild-type airways, the serous acini, mucus tubules, and collecting ducts secrete Cl- and Na+ into the lumen in response to carbachol and forskolin stimulation. The ciliated duct also transports Cl- and Na+ but in the opposite direction, i.e., reabsorption from the ASL, which may contribute to lowering Na+ and Cl- activities in the secreted fluid. In CFTR-/- airways, the serous acini, collecting ducts, and ciliated ducts fail to transport ions after forskolin stimulation, resulting in the production of smaller volumes of ASL with normal Cl-, Na+, and K+ concentration.


Asunto(s)
Células Acinares/metabolismo , Cilios/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Pulmón/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/patología , Animales , Carbacol/farmacología , Cationes Monovalentes , Cloruros/metabolismo , Cilios/efectos de los fármacos , Cilios/patología , Colforsina/farmacología , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Modelos Animales de Enfermedad , Técnicas Electroquímicas , Electrodos , Eliminación de Gen , Expresión Génica , Humanos , Transporte Iónico , Pulmón/efectos de los fármacos , Pulmón/patología , Potasio/metabolismo , Sodio/metabolismo , Porcinos
2.
Can Assoc Radiol J ; 70(4): 361-366, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30928202

RESUMEN

INTRODUCTION: Although medical factors such as hypertension and coagulopathy have been identified that are associated with hemorrhage after renal biopsy, little is known about the role of technical factors. The purpose of our study was to examine the effects of biopsy needle direction on renal biopsy specimen adequacy and bleeding complications. METHODS: Two hundred and forty-two patients who had undergone ultrasound-guided renal biopsies were included. A printout of the ultrasound picture taken at the time of the biopsy was used to measure the biopsy angle ("angle of attack" [AOA]) and to determine if the biopsy needle was aimed at the upper or lower pole and if the medulla was targeted or avoided. RESULTS: Of the 3 groups of biopsy angle, an AOA of between 50°-70° yielded the most glomeruli per core (P = .001) and the fewest inadequate specimens (4% vs 15% for > 70°, and 9% for < 50°, P = .038). Biopsy directed at a pole vs an interpolar region resulted in fewer inadequate specimens (8% vs 23%, P = .005), while biopsies that were medulla-avoiding resulted in fewer inadequate specimens (5% vs 16%, P = .004) and markedly reduced bleeding complications (12% vs 46%, P < .001) compared to biopsies where the medulla was entered. DISCUSSION: An AOA of approximately 60°, aiming at the poles, and avoiding the medulla were each associated with fewer inadequate biopsies and bleeding complications. While biopsy of the medulla is necessary for some diagnoses, the increased bleeding risk emphasizes the need for communication between nephrologist, pathologist, and radiologist.


Asunto(s)
Biopsia con Aguja/métodos , Biopsia Guiada por Imagen , Enfermedades Renales/patología , Ultrasonografía Intervencional , Adulto , Femenino , Hemorragia/etiología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
3.
iScience ; 27(1): 108629, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38188522

RESUMEN

Since the early seminal studies on epithelial solute transport, it has been understood that there must be crosstalk among different members of the transport machinery to coordinate their activity and, thus, generate localized electrochemical gradients that force solute flow in the required direction that would otherwise be thermodynamically unfavorable. However, mechanisms underlying intracellular crosstalk remain unclear. We present evidence that crosstalk between apical and basolateral membrane transporters is mediated by intracellular Ca2+ signaling in insect renal epithelia. Ion flux across the basolateral membrane is encoded in the intracellular Ca2+ oscillation frequency and amplitude modulation and that information is used by the apical membrane to adjust ion flux accordingly. Moreover, imposing experimentally generated intracellular Ca2+ oscillation modulation causes cells to predictably adjust their ion transport properties. Our results suggest that intracellular Ca2+ oscillation frequency and amplitude modulation encode information on transmembrane ion flux that is required for crosstalk.

4.
Sci Rep ; 9(1): 540, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679487

RESUMEN

Inhaled hypertonic saline (HTS) treatment is used to improve lung health in patients with cystic fibrosis (CF). The current consensus is that the treatment generates an osmotic gradient that draws water into the airways and increases airway surface liquid (ASL) volume. However, there is evidence that HTS may also stimulate active secretion of ASL by airway epithelia through the activation of sensory neurons. We tested the contribution of the nervous system and airway epithelia on HTS-stimulated ASL height increase in CF and wild-type swine airway. We used synchrotron-based imaging to investigate whether airway neurons and epithelia are involved in HTS treatment-triggered ASL secretion in CFTR-/- and wild-type swine. We showed that blocking parasympathetic and sensory neurons in airway resulted in ~50% reduction of the effect of HTS treatment on ASL volume in vivo. Incubating tracheal preparations with inhibitors of epithelial ion transport across airway decreased secretory responses to HTS treatment. CFTR-/- swine ex-vivo tracheal preparations showed substantially decreased secretory response to HTS treatment after blockage of neuronal activity. Our results indicated that HTS-triggered ASL secretion is partially mediated by the stimulation of airway neurons and the subsequent activation of active epithelia secretion; osmosis accounts for only ~50% of the effect.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Quiste Mediastínico/tratamiento farmacológico , Quiste Mediastínico/metabolismo , Solución Salina Hipertónica/uso terapéutico , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Administración por Inhalación , Animales , Animales Modificados Genéticamente , Secreciones Corporales/efectos de los fármacos , Secreciones Corporales/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Técnicas de Inactivación de Genes , Transporte Iónico/efectos de los fármacos , Masculino , Ósmosis/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Solución Salina Hipertónica/administración & dosificación , Solución Salina Hipertónica/farmacología , Porcinos
5.
Nat Commun ; 8(1): 786, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28983075

RESUMEN

Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) channel, which can result in chronic lung disease. The sequence of events leading to lung disease is not fully understood but recent data show that the critical pathogenic event is the loss of the ability to clear bacteria due to abnormal airway surface liquid secretion (ASL). However, whether the inhalation of bacteria triggers ASL secretion and whether this is abnormal in cystic fibrosis has never been tested. Here we show, using a novel synchrotron-based in vivo imaging technique, that wild-type pigs display both a basal and a Toll-like receptor-mediated ASL secretory response to the inhalation of cystic fibrosis relevant bacteria. Both mechanisms fail in CFTR-/- swine, suggesting that cystic fibrosis airways do not respond to inhaled pathogens, thus favoring infection and inflammation that may eventually lead to tissue remodeling and respiratory disease.Cystic fibrosis is caused by mutations in the CFTR chloride channel, leading to reduced airway surface liquid secretion. Here the authors show that exposure to bacteria triggers secretion in wild-type but not in pig models of cystic fibrosis, suggesting an impaired response to pathogens contributes to infection.


Asunto(s)
Fibrosis Quística/metabolismo , Pulmón/metabolismo , Pseudomonas aeruginosa , Mucosa Respiratoria/metabolismo , Animales , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Modelos Animales de Enfermedad , Exposición por Inhalación , Pulmón/diagnóstico por imagen , Masculino , Radiografía , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA