Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 23(3): 713-722, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28373692

RESUMEN

Microtubule severing enzymes implement a diverse range of tissue-specific molecular functions throughout development and into adulthood. Although microtubule severing is fundamental to many dynamic neural processes, little is known regarding the role of the family member Katanin p60 subunit A-like 1, KATNAL1, in central nervous system (CNS) function. Recent studies reporting that microdeletions incorporating the KATNAL1 locus in humans result in intellectual disability and microcephaly suggest that KATNAL1 may play a prominent role in the CNS; however, such associations lack the functional data required to highlight potential mechanisms which link the gene to disease symptoms. Here we identify and characterise a mouse line carrying a loss of function allele in Katnal1. We show that mutants express behavioural deficits including in circadian rhythms, sleep, anxiety and learning/memory. Furthermore, in the brains of Katnal1 mutant mice we reveal numerous morphological abnormalities and defects in neuronal migration and morphology. Furthermore we demonstrate defects in the motile cilia of the ventricular ependymal cells of mutants, suggesting a role for Katnal1 in the development of ciliary function. We believe the data we present here are the first to associate KATNAL1 with such phenotypes, demonstrating that the protein plays keys roles in a number of processes integral to the development of neuronal function and behaviour.


Asunto(s)
Katanina/genética , Katanina/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Cilios/genética , Cilios/fisiología , Ritmo Circadiano/genética , Epéndimo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Microcefalia , Microtúbulos/metabolismo , Mutación , Mutación Missense , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Sueño/genética
2.
Osteoarthritis Cartilage ; 23(11): 1981-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26521744

RESUMEN

OBJECTIVE: To define how the catabolic cytokines (Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα)) affect the circadian clock mechanism and the expression of clock-controlled catabolic genes within cartilage, and to identify the downstream pathways linking the cytokines to the molecular clock within chondrocytes. METHODS: Ex vivo cartilage explants were isolated from the Cry1-luc or PER2::LUC clock reporter mice. Clock gene dynamics were monitored in real-time by bioluminescence photon counting. Gene expression changes were studied by qRT-PCR. Functional luc assays were used to study the function of the core Clock/BMAL1 complex in SW-1353 cells. NFкB pathway inhibitor and fluorescence live-imaging of cartilage were performed to study the underlying mechanisms. RESULTS: Exposure to IL-1ß severely disrupted circadian gene expression rhythms in cartilage. This effect was reversed by an anti-inflammatory drug dexamethasone, but not by other clock synchronizing agents. Circadian disruption mediated by IL-1ß was accompanied by disregulated expression of endogenous clock genes and clock-controlled catabolic pathways. Mechanistically, NFкB signalling was involved in the effect of IL-1ß on the cartilage clock in part through functional interference with the core Clock/BMAL1 complex. In contrast, TNFα had little impact on the circadian rhythm and clock gene expression in cartilage. CONCLUSION: In our experimental system (young healthy mouse cartilage), we demonstrate that IL-1ß (but not TNFα) abolishes circadian rhythms in Cry1-luc and PER2::LUC gene expression. These data implicate disruption of the chondrocyte clock as a novel aspect of the catabolic responses of cartilage to pro-inflammatory cytokines, and provide an additional mechanism for how chronic joint inflammation may contribute to osteoarthritis (OA).


Asunto(s)
Condrocitos/metabolismo , Relojes Circadianos/genética , Citocinas/genética , ADN/genética , Regulación de la Expresión Génica , FN-kappa B/genética , Osteoartritis/genética , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Células Cultivadas , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , FN-kappa B/biosíntesis , Osteoartritis/metabolismo , Osteoartritis/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Eur J Neurosci ; 40(3): 2528-40, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24891292

RESUMEN

To serve as a robust internal circadian clock, the cell-autonomous molecular and electrophysiological activities of the individual neurons of the mammalian suprachiasmatic nucleus (SCN) are coordinated in time and neuroanatomical space. Although the contributions of the chemical and electrical interconnections between neurons are essential to this circuit-level orchestration, the features upon which they operate to confer robustness to the ensemble signal are not known. To address this, we applied several methods to deconstruct the interactions between the spatial and temporal organisation of circadian oscillations in organotypic slices from mice with circadian abnormalities. We studied the SCN of mice lacking Cryptochrome genes (Cry1 and Cry2), which are essential for cell-autonomous oscillation, and the SCN of mice lacking the vasoactive intestinal peptide receptor 2 (VPAC2-null), which is necessary for circuit-level integration, in order to map biological mechanisms to the revealed oscillatory features. The SCN of wild-type mice showed a strong link between the temporal rhythm of the bioluminescence profiles of PER2::LUC and regularly repeated spatially organised oscillation. The Cry-null SCN had stable spatial organisation but lacked temporal organisation, whereas in VPAC2-null SCN some specimens exhibited temporal organisation in the absence of spatial organisation. The results indicated that spatial and temporal organisation were separable, that they may have different mechanistic origins (cell-autonomous vs. interneuronal signaling) and that both were necessary to maintain robust and organised circadian rhythms throughout the SCN. This study therefore provided evidence that the coherent emergent properties of the neuronal circuitry, revealed in the spatially organised clusters, were essential to the pacemaking function of the SCN.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Criptocromos/fisiología , Receptores de Tipo II del Péptido Intestinal Vasoactivo/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/fisiología , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética
4.
J Biol Rhythms ; 24(1): 16-24, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19150926

RESUMEN

The circadian timing of gene expression is determined by transcriptional regulation through upstream response elements present throughout the genome. Central to this regulation are the actions of a core group of transcriptional activators and repressors, which act through, and are themselves regulated by, a small set of canonical circadian response elements. Among these, the E-box (CACGTG) is crucial for daytime transcriptional activity. The mammalian Period (Per1-3) and Cryptochrome (Cry1-2) genes are E-box-regulated genes, but in peripheral tissues peak Cry1 mRNA expression is delayed by several hours relative to that of Per. It has been proposed that this delay originates from interactions between the proximal E-box and retinoic acid-related orphan receptor response elements (RORE) present in the Cry1 promoter. By using real-time luciferase reporter assays in NIH3T3 cells the authors show here that a proximal 47-bp E-box containing region of the Cry1 promoter is both necessary and sufficient to drive circadian Cry1 transcription with an appropriate phase delay (around 4 h) relative to Per2. The results therefore suggest that, at least in this in vitro model of the clock, RORE are not necessary for the appropriate circadian regulation of Cry1 expression and rather suggest that sequences surrounding the proximal E-boxes confer gene-specific circadian phasing.


Asunto(s)
Ritmo Circadiano/fisiología , Flavoproteínas/fisiología , Animales , Secuencia de Bases , Criptocromos , Flavoproteínas/genética , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Células 3T3 NIH , Receptores de Ácido Retinoico , Elementos de Respuesta , Homología de Secuencia de Ácido Nucleico , Ovinos , Transcripción Genética
5.
Science ; 288(5468): 1013-9, 2000 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-10807566

RESUMEN

We show that, in the mouse, the core mechanism for the master circadian clock consists of interacting positive and negative transcription and translation feedback loops. Analysis of Clock/Clock mutant mice, homozygous Period2(Brdm1) mutants, and Cryptochrome-deficient mice reveals substantially altered Bmal1 rhythms, consistent with a dominant role of PERIOD2 in the positive regulation of the Bmal1 loop. In vitro analysis of CRYPTOCHROME inhibition of CLOCK: BMAL1-mediated transcription shows that the inhibition is through direct protein:protein interactions, independent of the PERIOD and TIMELESS proteins. PERIOD2 is a positive regulator of the Bmal1 loop, and CRYPTOCHROMES are the negative regulators of the Period and Cryptochrome cycles.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Proteínas de Drosophila , Proteínas del Ojo , Flavoproteínas/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados , Núcleo Supraquiasmático/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Relojes Biológicos/genética , Proteínas CLOCK , Proteínas de Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Ritmo Circadiano/genética , Criptocromos , Dimerización , Retroalimentación , Femenino , Flavoproteínas/genética , Regulación de la Expresión Génica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas Circadianas Period , Biosíntesis de Proteínas , ARN/metabolismo , Receptores Acoplados a Proteínas G , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética
6.
Neuron ; 25(2): 437-47, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10719897

RESUMEN

The circadian clock in the suprachiasmatic nuclei (SCN) is comprised of a cell-autonomous, autoregulatory transcriptional/translational feedback loop. Its molecular components include three period and two cryptochrome genes. We describe circadian patterns of expression of mPER2 and mPER3 in the mouse SCN that are synchronous to those for mPER1, mCRY1, and mCRY2. Coimmunoprecipitation experiments demonstrate in vivo associations of the SCN mPER proteins with each other and with the mCRY proteins, and of mCRY proteins with mTIM, but no mPER/mTIM interactions. Examination of the effects of weak and strong resetting light pulses on SCN clock proteins highlights a central role for mPER1 in photic entrainment, with no acute light effects on either the mCRY or mTIM proteins. These clock protein interactions and photic responses in mice are divergent from those described in Drosophila.


Asunto(s)
Ritmo Circadiano/genética , Proteínas de Drosophila , Proteínas del Ojo , Proteínas Nucleares/genética , Células Fotorreceptoras de Invertebrados , Filogenia , Animales , Proteínas de Ciclo Celular , Criptocromos , Drosophila , Flavoproteínas/análisis , Flavoproteínas/genética , Expresión Génica/fisiología , Variación Genética , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos , Proteínas Nucleares/análisis , Proteínas Circadianas Period , Estimulación Luminosa , ARN Mensajero/análisis , Receptores Acoplados a Proteínas G , Núcleo Supraquiasmático/química , Núcleo Supraquiasmático/fisiología , Factores de Transcripción
7.
Neuron ; 30(2): 525-36, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11395012

RESUMEN

The role of mPer1 and mPer2 in regulating circadian rhythms was assessed by disrupting these genes. Mice homozygous for the targeted allele of either mPer1 or mPer2 had severely disrupted locomotor activity rhythms during extended exposure to constant darkness. Clock gene RNA rhythms were blunted in the suprachiasmatic nucleus of mPer2 mutant mice, but not of mPER1-deficient mice. Peak mPER and mCRY1 protein levels were reduced in both lines. Behavioral rhythms of mPer1/mPer3 and mPer2/mPer3 double-mutant mice resembled rhythms of mice with disruption of mPer1 or mPer2 alone, respectively, confirming the placement of mPer3 outside the core circadian clockwork. In contrast, mPer1/mPer2 double-mutant mice were immediately arrhythmic. Thus, mPER1 influences rhythmicity primarily through interaction with other clock proteins, while mPER2 positively regulates rhythmic gene expression, and there is partial compensation between products of these two genes.


Asunto(s)
Ritmo Circadiano/genética , Actividad Motora/fisiología , Proteínas Nucleares/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Relojes Biológicos , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Clonación Molecular , Regulación de la Expresión Génica , Biblioteca Genómica , Genotipo , Homocigoto , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Actividad Motora/genética , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Circadianas Period , Periodicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción , Transcripción Genética
8.
Trends Neurosci ; 20(10): 459-64, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9347613

RESUMEN

The main questions in circadian neurobiology are: how many oscillators are involved; how are their daily oscillations generated and synchronized to the external world; and how do they signal time of day to the organism. The suprachiasmatic nuclei of the hypothalamus (SCN) are well established as the principal circadian oscillator of mammals. Their 10,000 or so 'clock' neurones drive our overt rhythms-the daily patterning we observe in our physiology and behaviour being mirrored perfectly by their spontaneous cycle of neuronal activity. However, they are not our only circadian oscillator, their molecular timekeeping is not understood and they ways in which they communicate with other parts of the brain are more unusual than was previously assumed.


Asunto(s)
Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Encéfalo/fisiología , Humanos
9.
J Neuroendocrinol ; 18(6): 393-411, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16684130

RESUMEN

Corticosteroids are an essential component of the body's homeostatic system. In common with other such systems, this implies that corticosteroid levels in blood and, more importantly, in the tissues remain within an optimal range. It also implies that this range may vary according to circumstance. Lack of corticosteroids, such as untreated Addison's disease, can be fatal in humans. In this review, we are principally concerned with excess or disturbed patterns of circulating corticosteroids in the longer or shorter term, and the effects they have on the brain.


Asunto(s)
Corticoesteroides/fisiología , Química Encefálica/fisiología , Síndrome de Cushing/fisiopatología , Animales , Humanos
10.
J Biol Rhythms ; 20(2): 99-110, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15834107

RESUMEN

The hypothalamic suprachiasmatic nuclei (SCN), the principal circadian oscillator in mammals, are synchronized to the solar day by the light-dark cycle, and in turn, they coordinate circadian oscillations in peripheral tissues. The tau mutation in the Syrian hamster is caused by a point mutation leading to a deficiency in the ability of Casein Kinase 1epsilon to phosphorylate its targets, including circadian PER proteins. How this accelerates circadian period in neural tissues is not known, nor is its impact on peripheral circadian oscillators established. We show that this mutation has no effect on per mRNA expression nor the nuclear accumulation of PER proteins in the SCN. It does, however, accelerate the clearance of PER proteins from the nucleus to an extent sufficient to explain the shortened circadian period of behavioral rhythms. The mutation also has novel, unanticipated consequences for circadian timing in the periphery, including tissue-specific phase advances and/or reduced amplitude of circadian gene expression. The results suggest that the tau mutation accelerates a specific phase, during mid-late subjective night of the SCN circadian feedback loop, rather than cause a global compression of the entire cycle. This reprogrammed output from the clock is associated with peripheral desynchrony, which in turn could account for impaired growth and metabolic efficiency of the mutant.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano , Mutación Puntual , Núcleo Supraquiasmático/fisiología , Proteínas tau/genética , Animales , Secuencia de Bases , Caseína Cinasa 1 épsilon/genética , Caseína Cinasa 1 épsilon/metabolismo , Proteínas de Ciclo Celular , Cuerpo Estriado/metabolismo , Cricetinae , Cartilla de ADN , Inmunohistoquímica , Hibridación in Situ , Mesocricetus , Corteza Motora/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/genética , Proteínas Circadianas Period , ARN Mensajero/genética , Núcleo Supraquiasmático/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA