Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 103(3): 1693-1787, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603158

RESUMEN

Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."


Asunto(s)
Distinciones y Premios , Entrenamiento de Fuerza , Humanos , Atletas , Ejercicio Físico/fisiología , Adaptación Fisiológica , Músculo Esquelético , Resistencia Física
3.
Cell ; 159(4): 738-49, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417152

RESUMEN

Exercise represents a major challenge to whole-body homeostasis provoking widespread perturbations in numerous cells, tissues, and organs that are caused by or are a response to the increased metabolic activity of contracting skeletal muscles. To meet this challenge, multiple integrated and often redundant responses operate to blunt the homeostatic threats generated by exercise-induced increases in muscle energy and oxygen demand. The application of molecular techniques to exercise biology has provided greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses, and recent discoveries offer perspectives on the mechanisms by which muscle "communicates" with other organs and mediates the beneficial effects of exercise on health and performance.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Fenómenos Fisiológicos Cardiovasculares , Metabolismo Energético , Humanos , Enfermedades Metabólicas/fisiopatología , Enfermedades Metabólicas/prevención & control
4.
Cell ; 157(6): 1279-1291, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24906147

RESUMEN

Exercise training benefits many organ systems and offers protection against metabolic disorders such as obesity and diabetes. Using the recently identified isoform of PGC1-α (PGC1-α4) as a discovery tool, we report the identification of meteorin-like (Metrnl), a circulating factor that is induced in muscle after exercise and in adipose tissue upon cold exposure. Increasing circulating levels of Metrnl stimulates energy expenditure and improves glucose tolerance and the expression of genes associated with beige fat thermogenesis and anti-inflammatory cytokines. Metrnl stimulates an eosinophil-dependent increase in IL-4 expression and promotes alternative activation of adipose tissue macrophages, which are required for the increased expression of the thermogenic and anti-inflammatory gene programs in fat. Importantly, blocking Metrnl actions in vivo significantly attenuates chronic cold-exposure-induced alternative macrophage activation and thermogenic gene responses. Thus, Metrnl links host-adaptive responses to the regulation of energy homeostasis and tissue inflammation and has therapeutic potential for metabolic and inflammatory diseases.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Glucosa/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Factores de Crecimiento Nervioso/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Termogénesis , Factores de Transcripción/genética
5.
Trends Biochem Sci ; 48(11): 927-936, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37709636

RESUMEN

The ability of skeletal muscle to adapt to repeated contractile stimuli is one of the most intriguing aspects of physiology. The molecular bases underpinning these adaptations involve increased protein activity and/or expression, mediated by an array of pre- and post-transcriptional processes, as well as translational and post-translational control. A longstanding dogma assumes a direct relationship between exercise-induced increases in mRNA levels and subsequent changes in the abundance of the proteins they encode. Drawing on the results of recent studies, we dissect and question the common assumption of a direct relationship between changes in the skeletal muscle transcriptome and proteome induced by repeated muscle contractions (e.g., exercise).


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Transcriptoma , Contracción Muscular/genética , Proteoma
6.
Eur Heart J ; 45(15): 1303-1321, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38461405

RESUMEN

All guidelines worldwide strongly recommend exercise as a pillar of the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended for clinicians to promote and assist for the set-up of comprehensive exercise programmes to best advice in patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are narratively described based on the current best evidence. The document ends by highlighting disparities in access to supervised exercise programmes across Europe and the series of gaps for evidence requiring further research.


Asunto(s)
Claudicación Intermitente , Enfermedad Arterial Periférica , Humanos , Claudicación Intermitente/terapia , Enfermedad Arterial Periférica/terapia , Terapia por Ejercicio/métodos , Ejercicio Físico , Europa (Continente) , Caminata
7.
Am J Physiol Cell Physiol ; 327(1): C213-C219, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38586876

RESUMEN

Muscle isometric torque fluctuates according to time-of-day with such variation owed to the influence of circadian molecular clock genes. Satellite cells (SCs), the muscle stem cell population, also express molecular clock genes with several contractile-related genes oscillating in a diurnal pattern. Currently, limited evidence exists regarding the relationship between SCs and contractility, although long-term SC ablation alters muscle contractile function. Whether there are acute alterations in contractility following SC ablation and with respect to the time-of-day is unknown. We investigated whether short-term SC ablation affected contractile function at two times of day and whether any such alterations led to different extents of eccentric contraction-induced injury. Using an established mouse model to deplete SCs, we characterized muscle clock gene expression and ex vivo contractility at two times-of-day (morning: 0700 and afternoon: 1500). Morning-SC+ animals demonstrated ∼25%-30% reductions in tetanic/eccentric specific forces and, after eccentric injury, exhibited ∼30% less force-loss and ∼50% less dystrophinnegative fibers versus SC- counterparts; no differences were noted between Afternoon groups (Morning-SC+: -5.63 ± 0.61, Morning-SC-: -7.93 ± 0.61; N/cm2; P < 0.05) (Morning-SC+: 32 ± 2.1, Morning-SC-: 64 ± 10.2; dystrophinnegative fibers; P < 0.05). As Ca++ kinetics underpin force generation, we also evaluated caffeine-induced contracture force as an indirect marker of Ca++ availability and found similar force reductions in Morning-SC+ vs. SC- mice. We conclude that force production is reduced in the presence of SCs in the morning but not in the afternoon, suggesting that SCs may have a time-of-day influence over contractile function.NEW & NOTEWORTHY Muscle isometric torque fluctuates according to time-of-day with such variation owed to molecular clock regulation. Satellite cells (SCs) have recently demonstrated diurnal characteristics related to muscle physiology. In our work, force production was reduced in the presence versus absence of SCs in the morning but, not in the afternoon. Morning-SC+ animals, producing lower force, sustained lesser degrees of injury versus SC- counterparts. One potential mechanism underpinning lower forces produced appears to be lower calcium availability.


Asunto(s)
Ritmo Circadiano , Contracción Muscular , Células Satélite del Músculo Esquelético , Animales , Células Satélite del Músculo Esquelético/metabolismo , Ratones , Ritmo Circadiano/fisiología , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Factores de Tiempo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38467522

RESUMEN

All guidelines worldwide strongly recommend exercise as a pillar in the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended to promote and assist the set up of comprehensive exercise programmes and best advice for patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are described based on the current best evidence. The document ends by highlighting supervised exercise programme access disparities across Europe and the evidence gaps requiring further research.

9.
Vasa ; 53(2): 87-108, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461401

RESUMEN

All guidelines worldwide strongly recommend exercise as a pillar in the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended to promote and assist the set up of comprehensive exercise programmes and best advice for patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are described based on the current best evidence. The document ends by highlighting supervised exercise programme access disparities across Europe and the evidence gaps requiring further research.


Asunto(s)
Claudicación Intermitente , Enfermedad Arterial Periférica , Humanos , Claudicación Intermitente/terapia , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/terapia , Terapia por Ejercicio/efectos adversos , Terapia por Ejercicio/métodos , Ejercicio Físico , Europa (Continente) , Caminata
10.
Am J Physiol Cell Physiol ; 324(6): C1332-C1340, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184229

RESUMEN

Skeletal muscle comprises approximately 50% of individual body mass and plays vital roles in locomotion, heat production, and whole body metabolic homeostasis. This tissue exhibits a robust diurnal rhythm that is under control of the suprachiasmatic nucleus (SCN) region of the hypothalamus. The SCN acts as a "central" coordinator of circadian rhythms, while cell-autonomous "peripheral" clocks are located within almost all other tissues/organs in the body. Synchronization of the peripheral clocks in muscles (and other tissues) together with the central clock is crucial to ensure temporally coordinated physiology across all organ systems. By virtue of its mass, human skeletal muscle contains the largest collection of peripheral clocks, but within muscle resides a local stem cell population, satellite cells (SCs), which have their own functional molecular clock, independent of the numerous muscle clocks. Skeletal muscle has a daily turnover rate of 1%-2%, so the regenerative capacity of this tissue is important for whole body homeostasis/repair and depends on successful SC myogenic progression (i.e., proliferation, differentiation, and fusion). Emerging evidence suggests that SC-mediated muscle regeneration may, in part, be regulated by molecular clocks involved in SC-specific diurnal transcription. Here we provide insights on molecular clock regulation of muscle regeneration/repair and provide a novel perspective on the interplay between SC-specific molecular clocks, myogenic programs, and cell cycle kinetics that underpin myogenic progression.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/fisiología , Diferenciación Celular , Homeostasis , Músculo Esquelético/metabolismo , Relojes Circadianos/fisiología
11.
Diabetologia ; 64(9): 2061-2076, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34009435

RESUMEN

AIMS/HYPOTHESIS: We determined whether the time of day of exercise training (morning vs evening) would modulate the effects of consumption of a high-fat diet (HFD) on glycaemic control, whole-body health markers and serum metabolomics. METHODS: In this three-armed parallel-group randomised trial undertaken at a university in Melbourne, Australia, overweight/obese men consumed an HFD (65% of energy from fat) for 11 consecutive days. Participants were recruited via social media and community advertisements. Eligibility criteria for participation were male sex, age 30-45 years, BMI 27.0-35.0 kg/m2 and sedentary lifestyle. The main exclusion criteria were known CVD or type 2 diabetes, taking prescription medications, and shift-work. After 5 days, participants were allocated using a computer random generator to either exercise in the morning (06:30 hours), exercise in the evening (18:30 hours) or no exercise for the subsequent 5 days. Participants and researchers were not blinded to group assignment. Changes in serum metabolites, circulating lipids, cardiorespiratory fitness, BP, and glycaemic control (from continuous glucose monitoring) were compared between groups. RESULTS: Twenty-five participants were randomised (morning exercise n = 9; evening exercise n = 8; no exercise n = 8) and 24 participants completed the study and were included in analyses (n = 8 per group). Five days of HFD induced marked perturbations in serum metabolites related to lipid and amino acid metabolism. Exercise training had a smaller impact than the HFD on changes in circulating metabolites, and only exercise undertaken in the evening was able to partly reverse some of the HFD-induced changes in metabolomic profiles. Twenty-four-hour glucose concentrations were lower after 5 days of HFD compared with the participants' habitual diet (5.3 ± 0.4 vs 5.6 ± 0.4 mmol/l, p = 0.001). There were no significant changes in 24 h glucose concentrations for either exercise group but lower nocturnal glucose levels were observed in participants who trained in the evening, compared with when they consumed the HFD alone (4.9 ± 0.4 vs 5.3 ± 0.3 mmol/l, p = 0.04). Compared with the no-exercise group, peak oxygen uptake improved after both morning (estimated effect 1.3 ml min-1 kg-1 [95% CI 0.5, 2.0], p = 0.003) and evening exercise (estimated effect 1.4 ml min-1 kg-1 [95% CI 0.6, 2.2], p = 0.001). Fasting blood glucose, insulin, cholesterol, triacylglycerol and LDL-cholesterol concentrations decreased only in participants allocated to evening exercise training. There were no unintended or adverse effects. CONCLUSIONS/INTERPRETATION: A short-term HFD in overweight/obese men induced substantial alterations in lipid- and amino acid-related serum metabolites. Improvements in cardiorespiratory fitness were similar regardless of the time of day of exercise training. However, improvements in glycaemic control and partial reversal of HFD-induced changes in metabolic profiles were only observed when participants exercise trained in the evening. TRIAL REGISTRATION: anzctr.org.au registration no. ACTRN12617000304336. FUNDING: This study was funded by the Novo Nordisk Foundation (NNF14OC0011493).


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico , Control Glucémico , Humanos , Masculino , Persona de Mediana Edad , Obesidad/terapia , Sobrepeso/terapia
12.
J Physiol ; 599(3): 791-802, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31749163

RESUMEN

The past decade has witnessed growing scientific and commercial interest in the identification of bioactive oral compounds that mimic or potentiate the effects of exercise, so-called 'exercise pills' or 'exercise mimetics.' These compounds have, to date, typically targeted skeletal muscle in an attempt to stimulate some of the adaptations to exercise induced by endurance training. Accordingly, they fail to impart many of the broad health protecting effects of exercise that are seen in tissues and organs other than skeletal muscle. In the context that multiple integrative regulatory and often redundant pathways have evolved to detect and respond to human movement, here we consider the complex challenges of designing a pill that might mimic the extensive range of exercise benefits. In particular, we consider the limits of the current 'myocentric' paradigm given the wide-ranging array of impacts that exercise exerts on atherosclerosis and the cardiovascular system. We discuss the validity and limitations of the concept that low dose cardiovascular polypills, already in large scale trials, may represent one form of cardiovascular exercise mimetic. Finally, given that some calls for an exercise pill stem from a response to the perceived failure of expert advice, evidence-based guidelines and current public health approaches, we explore possible strategies that might address the global rise in inactivity. In the event that a broad spectrum exercise mimetic might ever be developed, we discuss some generic issues related to adoption and adherence of therapeutic interventions.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Adaptación Fisiológica , Biomimética , Humanos , Resistencia Física
13.
Am J Physiol Endocrinol Metab ; 321(2): E203-E216, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34151582

RESUMEN

We aimed to determine whether interrupting prolonged sitting improves glycemic control and the metabolic profile of free-living adults with obesity. Sixteen sedentary individuals {10 women/6 men; median [interquartile range (IQR)] age 50 (44-53) yr, body mass index (BMI) 32 (32-35.8) kg/m2} were fitted with continuous glucose and activity monitors for 4 wk. After a 1-wk baseline period, participants were randomized into habitual lifestyle (Control) or frequent activity breaks from sitting (FABS) intervention groups. Each day, between 0800 and 1800 h, FABS received smartwatch notifications to break sitting with 3 min of low-to-moderate-intensity physical activity every 30 min. Glycemic control was assessed by oral glucose tolerance test (OGTT) and continuous glucose monitoring. Blood samples and vastus lateralis biopsies were taken for assessment of clinical chemistry and the skeletal muscle lipidome, respectively. Compared with baseline, FABS increased median steps by 744 [IQR (483-951)] and walking time by 10.4 [IQR (2.2-24.6)] min/day. Other indices of activity/sedentary behavior were unchanged. Glucose tolerance and average 24-h glucose curves were also unaffected. However, mean (±SD) fasting glucose levels [-0.34 (±0.37) mmol/L] and daily glucose variation [%CV; -2% (±2.2%)] reduced in FABS, suggesting a modest benefit for glycemic control that was most robust at higher volumes of daily activity. Clinical chemistry and the skeletal muscle lipidome were largely unperturbed, although two long-chain triglycerides increased 1.25-fold in FABS, postintervention. All parameters remained stable in control. Under free-living conditions, FABS lowered fasting glucose and glucose variability. Larger volumes of activity breaks from sitting may be required to promote greater health benefits.NEW & NOTEWORTHY Under free-living conditions, breaking sitting modestly increased activity behavior. Breaking sitting was insufficient to modulate glucose tolerance or the skeletal muscle lipidome. Activity breaks reduced fasting blood glucose levels and daily glucose variation compared with baseline, with a tendency to also decrease fasting LDLc. This intervention may represent the minimal dose for breaking sedentary behavior, with larger volumes of activity possibly required to promote greater health benefits.


Asunto(s)
Glucosa/metabolismo , Obesidad/metabolismo , Conducta Sedentaria , Sedestación , Adulto , Ayuno , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Persona de Mediana Edad
14.
Int J Mol Sci ; 22(17)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34502525

RESUMEN

The AMP-activated protein kinase (AMPK), a central regulator of cellular energy balance and metabolism, binds glycogen via its ß subunit. However, the physiological effects of disrupting AMPK-glycogen interactions remain incompletely understood. To chronically disrupt AMPK-glycogen binding, AMPK ß double knock-in (DKI) mice were generated with mutations in residues critical for glycogen binding in both the ß1 (W100A) and ß2 (W98A) subunit isoforms. We examined the effects of this DKI mutation on whole-body substrate utilization, glucose homeostasis, and tissue glycogen dynamics. Body composition, metabolic caging, glucose and insulin tolerance, serum hormone and lipid profiles, and tissue glycogen and protein content were analyzed in chow-fed male DKI and age-matched wild-type (WT) mice. DKI mice displayed increased whole-body fat mass and glucose intolerance associated with reduced fat oxidation relative to WT. DKI mice had reduced liver glycogen content in the fed state concomitant with increased utilization and no repletion of skeletal muscle glycogen in response to fasting and refeeding, respectively, despite similar glycogen-associated protein content relative to WT. DKI liver and skeletal muscle displayed reductions in AMPK protein content versus WT. These findings identify phenotypic effects of the AMPK DKI mutation on whole-body metabolism and tissue AMPK content and glycogen dynamics.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adiposidad , Glucógeno/metabolismo , Metabolismo de los Lípidos , Proteínas Quinasas Activadas por AMP/genética , Animales , Glucógeno/genética , Ratones , Ratones Transgénicos , Oxidación-Reducción , Unión Proteica
15.
Diabetologia ; 63(11): 2253-2259, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32761356

RESUMEN

The proliferation in the rate of diagnosis of obesity and type 2 diabetes mellitus continues unabated, with current recommendations for primary lifestyle changes (i.e. modification to dietary patterns) having a limited impact in reducing the incidence of these metabolic diseases. Part of the reason for the failure to alter nutritional practices is that current dietary recommendations may be unrealistic for the majority of adults. Indeed, round-the-clock access to energy-dense, nutrient-poor food makes long-term changes to dietary habits challenging. Hence, there is urgent need for innovations in the delivery of evidence-based diet interventions to rescue some of the deleterious effects on circadian biology induced by our modern-day lifestyle. With the growing appreciation that the duration over which food is consumed during a day has profound effects on numerous physiological and metabolic processes, we discuss dietary protocols that modify the timing of food intake to deliberately alter the feeding-fasting cycle. Such chrono-nutrition functions to optimise metabolism by timing nutrient intake to the acrophases of metabolic rhythms to improve whole-body insulin sensitivity and glycaemic control, and thereby positively impact metabolic health. Graphical abstract.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Obesidad/metabolismo , Obesidad/prevención & control , Animales , Ingestión de Alimentos/fisiología , Humanos , Ratones , Estado Nutricional
16.
FASEB J ; 33(6): 7009-7017, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30840513

RESUMEN

High-circulating lipid availability attenuates protein feeding-induced muscle protein synthesis (MPS). Whether the combined effects of exercise and protein ingestion can rescue this inhibition is unknown. In a parallel-groups design, middle-aged sedentary males (n = 28) matched for fat-free mass and body mass index received a 5-h intravenous infusion of either saline/control (n = 9), 20% intralipid infusion (n = 9), or intralipid with concomitant exercise (n = 10). Two hours into each of these infusions, participants received a primed constant infusion of L-(ring-[13C]6)-phenylalanine. Muscle biopsies were taken immediately after control and lipid infusions, at which time, a 30-g protein beverage was ingested. Further biopsies were taken 2 and 4 h after protein ingestion. Intralipid increased plasma free fatty acid concentrations from ∼0.4-2 mM, resulting in an attenuated MPS response to protein ingestion, which was prevented by exercise. Intralipid resulted in a lower peak aminoacidemia following protein ingestion that was exacerbated by prior exercise, suggesting efficiency of the working skeletal muscle to utilize amino acid substrate to drive the postprandial anabolic response. We conclude that in the face of high-fat availability, exercise preserves the sensitivity of skeletal muscle to the anabolic properties of amino acids.-Smiles, W. J., Churchward-Venne, T. A., van Loon, L. J. C., Hawley, J. A., Camera, D. M. A single bout of strenuous exercise overcomes lipid-induced anabolic resistance to protein ingestion in overweight, middle-aged men.


Asunto(s)
Ejercicio Físico/fisiología , Lípidos/sangre , Proteínas/administración & dosificación , Adulto , Aminoácidos/sangre , Glucemia , Citocinas/sangre , Citocinas/metabolismo , Ácidos Grasos no Esterificados/sangre , Humanos , Insulina/sangre , Masculino , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
17.
Exerc Sport Sci Rev ; 48(1): 4-10, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31688298

RESUMEN

This Perspective for Progress provides a synopsis for the potential of time-restricted eating (TRE) to rescue some of the deleterious effects on circadian biology induced by our modern-day lifestyle. We provide novel insights into the comparative and potential complementary effects of TRE and exercise training on metabolic health.


Asunto(s)
Ritmo Circadiano/fisiología , Ejercicio Físico/fisiología , Estilo de Vida Saludable , Comidas , Ayuno/fisiología , Humanos , Enfermedades Metabólicas/fisiopatología , Factores de Riesgo , Factores de Tiempo
18.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979341

RESUMEN

Estrogen (E2) and polyunsaturated fatty acids (n-3PUFA) supplements independently support general wellbeing and enhance muscle regeneration in-vivo and myotube formation in-vitro. However, the combined effect of E2 and n-3PUFA on myoblast differentiation is not known. The purpose of the study was to identify whether E2 and n-3PUFA possess a synergistic effect on in-vitro myogenesis. Mouse C2C12 myoblasts, a reliable model to reiterate myogenic events in-vitro, were treated with 10nM E2 and 50µM eicosapentaenoic acid (EPA) independently or combined, for 0-24 h or 0-120 h during differentiation. Immunofluorescence, targeted qPCR and next generation sequencing (NGS) were used to characterize morphological changes and differential expression of key genes involved in the regulation of myogenesis and muscle function pathways. E2 increased estrogen receptor α (Erα) and the expression of the mitogen-activated protein kinase 11 (Mapk11) within 1 h of treatment and improved myoblast differentiation and myotube formation. A significant reduction (p < 0.001) in myotube formation and in the expression of myogenic regulatory factors Mrfs (MyoD, Myog and Myh1) and the myoblast fusion related gene, Tmem8c, was observed in the presence of EPA and the combined E2/EPA treatment. Additionally, EPA treatment at 48 h of differentiation inhibited the majority of genes associated with the myogenic and striated muscle contraction pathways. In conclusion, EPA and E2 had no synergistic effect on myotube formation in-vitro. Independently, EPA inhibited myoblast differentiation and overrides the stimulatory effect of E2 when used in combination with E2.


Asunto(s)
Ácido Eicosapentaenoico/farmacología , Estrógenos/farmacología , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Animales , Línea Celular , ADN Glicosilasas/metabolismo , Sinergismo Farmacológico , Receptor alfa de Estrógeno/metabolismo , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de la Membrana/metabolismo , Ratones , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteína MioD/metabolismo , Mioblastos/citología , Miogenina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
19.
FASEB J ; 32(6): 2979-2991, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401600

RESUMEN

High-fat, low-carbohydrate (CHO) diets increase whole-body rates of fat oxidation and down-regulate CHO metabolism. We measured substrate utilization and skeletal muscle mitochondrial respiration to determine whether these adaptations are driven by high fat or low CHO availability. In a randomized crossover design, 8 male cyclists consumed 5 d of a high-CHO diet [>70% energy intake (EI)], followed by 5 d of either an isoenergetic high-fat (HFAT; >65% EI) or high-protein diet (HPRO; >65% EI) with CHO intake clamped at <20% EI. During the intervention, participants undertook daily exercise training. On d 6, participants consumed a high-CHO diet before performing 100 min of submaximal steady-state cycling plus an ∼30-min time trial. After 5 d of HFAT, skeletal muscle mitochondrial respiration supported by octanoylcarnitine and pyruvate, as well as uncoupled respiration, was decreased at rest, and rates of whole-body fat oxidation were higher during exercise compared with HPRO. After 1 d of high-CHO diet intake, mitochondrial respiration returned to baseline values in HFAT, whereas rates of substrate oxidation returned toward baseline in both conditions. These findings demonstrate that high dietary fat intake, rather than low-CHO intake, contributes to reductions in mitochondrial respiration and increases in whole-body rates of fat oxidation after a consuming a high-fat, low-CHO diet.-Leckey, J. J., Hoffman, N. J., Parr, E. B., Devlin, B. L., Trewin, A. J., Stepto, N. K., Morton, J. P., Burke, L. M., Hawley, J. A. High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Ejercicio Físico/fisiología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Adulto , Dieta Baja en Carbohidratos , Humanos , Masculino , Oxidación-Reducción/efectos de los fármacos
20.
J Physiol ; 596(11): 2091-2120, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29532476

RESUMEN

KEY POINTS: Strategies to enhance the loss of fat while preserving muscle mass during energy restriction are of great importance to prevent sarcopenia in overweight older adults. We show for the first time that the integrated rate of synthesis of numerous individual contractile, cytosolic and mitochondrial skeletal muscle proteins was increased by resistance training (RT) and unaffected by dietary protein intake pattern during energy restriction in free-living, obese older men. We observed a correlation between the synthetic rates of skeletal muscle-derived proteins obtained in serum (creatine kinase M-type, carbonic anhydrase 3) and the synthetic rates of proteins obtained via muscle sampling; and that the synthesis rates of these proteins in serum revealed the stimulatory effects of RT. These results have ramifications for understanding the influence of RT on skeletal muscle and are consistent with the role of RT in maintaining muscle protein synthesis and potentially supporting muscle mass preservation during weight loss. ABSTRACT: We determined how the pattern of protein intake and resistance training (RT) influenced longer-term (2 weeks) integrated myofibrillar protein synthesis (MyoPS) during energy restriction (ER). MyoPS and proteome kinetics were measured during 2 weeks of ER alone and 2 weeks of ER plus RT (ER + RT) in overweight/obese older men. Participants were randomized to consume dietary protein in a balanced (BAL: 25% daily protein per meal × 4 meals) or skewed (SKEW: 7:17:72:4% daily protein per meal) pattern (n = 10 per group). Participants ingested deuterated water during the consecutive 2-week periods, and skeletal muscle biopsies and serum were obtained at the beginning and conclusion of ER and ER + RT. Bulk MyoPS (i.e. synthesis of the myofibrillar protein sub-fraction) and the synthetic rates of numerous individual skeletal muscle proteins were quantified. Bulk MyoPS was not affected by protein distribution during ER or ER + RT (ER: BAL = 1.24 ± 0.31%/day, SKEW = 1.26 ± 0.37%/day; ER + RT: BAL = 1.64 ± 0.48%/day, SKEW = 1.52 ± 0.66%/day) but was ∼26% higher during ER + RT than during ER (P = 0.023). The synthetic rates of 175 of 190 contractile, cytosolic and mitochondrial skeletal muscle proteins, as well as synthesis of muscle-derived proteins measured in serum, creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3), were higher during ER + RT than during ER (P < 0.05). In addition, the synthetic rates of CK-M and CA-3 measured in serum correlated with the synthetic rates of proteins obtained via muscle sampling (P < 0.05). This study provides novel data on the skeletal muscle adaptations to RT and dietary protein distribution.


Asunto(s)
Dieta Reductora/métodos , Proteínas en la Dieta/administración & dosificación , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/fisiopatología , Proteoma/análisis , Entrenamiento de Fuerza , Anciano , Índice de Masa Corporal , Metabolismo Energético , Humanos , Masculino , Miofibrillas/metabolismo , Obesidad/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA