Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(15): 3240-3255, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886582

RESUMEN

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Citidina Desaminasa , Daño del ADN , Replicación del ADN , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Inestabilidad Genómica , Línea Celular Tumoral , Proteínas
2.
J Immunol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007641

RESUMEN

In response to DNA double-strand breaks (DSBs), the ATM kinase activates NF-κB factors to stimulate gene expression changes that promote survival and allow time for cells to repair damage. In cell lines, ATM can activate NF-κB transcription factors via two independent, convergent mechanisms. One is ATM-mediated phosphorylation of nuclear NF-κB essential modulator (Nemo) protein, which leads to monoubiquitylation and export of Nemo to the cytoplasm where it engages the IκB kinase (IKK) complex to activate NF-κB. Another is DSB-triggered migration of ATM into the cytoplasm, where it promotes monoubiquitylation of Nemo and the resulting IKK-mediated activation of NF-κB. ATM has many other functions in the DSB response beyond activation of NF-κB, and Nemo activates NF-κB downstream of diverse stimuli, including developmental or proinflammatory stimuli such as LPSs. To elucidate the in vivo role of DSB-induced, ATM-dependent changes in expression of NF-κB-responsive genes, we generated mice expressing phosphomutant Nemo protein lacking consensus SQ sites for phosphorylation by ATM or related kinases. We demonstrate that these mice are viable/healthy and fertile and exhibit overall normal B and T lymphocyte development. Moreover, treatment of their B lineage cells with LPS induces normal NF-κB-regulated gene expression changes. Furthermore, in marked contrast to results from a pre-B cell line, primary B lineage cells expressing phosphomutant Nemo treated with the genotoxic drug etoposide induce normal ATM- and Nemo-dependent changes in expression of NF-κB-regulated genes. Our data demonstrate that ATM-dependent phosphorylation of Nemo SQ motifs in vivo is dispensable for DSB-signaled changes in expression of NF-κB-regulated genes.

3.
J Immunol ; 212(4): 534-540, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38117277

RESUMEN

In jawed vertebrates, adaptive immunity depends on the process of V(D)J recombination creating vast numbers of T and B lymphocytes that each expresses unique Ag receptors of uniform specificity. The asynchronous initiation of V-to-(D)J rearrangement between alleles and the resulting protein from one allele signaling feedback inhibition of V recombination on the other allele ensures homogeneous receptor specificity of individual cells. Upon productive Vß-to-DßJß rearrangements in noncycling double-negative thymocytes, TCRß protein signals induction of the cyclin D3 protein to accelerate cell cycle entry, thereby driving proliferative expansion of developing αß T cells. Through undetermined mechanisms, the inactivation of cyclin D3 in mice causes an increased frequency of αß T cells that express TCRß proteins from both alleles, producing lymphocytes of heterogeneous specificities. To determine how cyclin D3 enforces monogenic TCRß expression, we used our mouse lines with enhanced rearrangement of specific Vß segments due to replacement of their poor-quality recombination signal sequence (RSS) DNA elements with a better RSS. We show that cyclin D3 inactivation in these mice elevates the frequencies of αß T cells that display proteins from RSS-augmented Vß segments on both alleles. By assaying mature αß T cells, we find that cyclin D3 deficiency increases the levels of Vß rearrangements that occur within developing thymocytes. Our data demonstrate that a component of the cell cycle machinery mediates TCRß protein-signaled feedback inhibition in thymocytes to achieve monogenic TCRß expression and resulting uniform specificity of individual αß T cells.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Timocitos , Animales , Ratones , Alelos , Ciclina D3/genética , Retroalimentación , Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T , Linfocitos , Receptores de Antígenos de Linfocitos T alfa-beta/genética
4.
Blood ; 142(20): 1724-1739, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37683180

RESUMEN

Aberrant skipping of coding exons in CD19 and CD22 compromises the response to immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5' untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform contained upstream open reading frames and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 postmosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias , Humanos , Empalme Alternativo , ARN Mensajero/genética , Regiones no Traducidas 5' , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Antígenos CD20/genética , Isoformas de Proteínas/genética , Inmunoterapia , Biosíntesis de Proteínas , Neoplasias/genética
5.
Proc Natl Acad Sci U S A ; 119(18): e2123560119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35471909

RESUMEN

The duper mutation is a recessive mutation that shortens the period length of the circadian rhythm in Syrian hamsters. These animals show a large phase shift when responding to light pulses. Limited genetic resources for the Syrian hamster (Mesocricetus auratus) presented a major obstacle to cloning duper. This caused the duper mutation to remain unknown for over a decade. In this study, we did a de novo genome assembly of Syrian hamsters with long-read sequencing data from two different platforms, Pacific Biosciences and Oxford Nanopore Technologies. Using two distinct ecotypes and a fast homozygosity mapping strategy, we identified duper as an early nonsense allele of Cryptochrome 1 (Cry1) leading to a short, unstable protein. CRY1 is known as a highly conserved component of the repressive limb of the core circadian clock. The genome assembly and other genomic datasets generated in this study will facilitate the use of the Syrian hamster in biomedical research.


Asunto(s)
COVID-19 , Criptocromos , Animales , Ritmo Circadiano/genética , Cricetinae , Criptocromos/genética , Humanos , Mutación con Pérdida de Función , Mesocricetus , Mutación , Factores de Transcripción/genética
6.
PLoS Pathog ; 18(9): e1010797, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095031

RESUMEN

Adenovirus is a common human pathogen that relies on host cell processes for transcription and processing of viral RNA and protein production. Although adenoviral promoters, splice junctions, and polyadenylation sites have been characterized using low-throughput biochemical techniques or short read cDNA-based sequencing, these technologies do not fully capture the complexity of the adenoviral transcriptome. By combining Illumina short-read and nanopore long-read direct RNA sequencing approaches, we mapped transcription start sites and RNA cleavage and polyadenylation sites across the adenovirus genome. In addition to confirming the known canonical viral early and late RNA cassettes, our analysis of splice junctions within long RNA reads revealed an additional 35 novel viral transcripts that meet stringent criteria for expression. These RNAs include fourteen new splice junctions which lead to expression of canonical open reading frames (ORFs), six novel ORF-containing transcripts, and 15 transcripts encoding for messages that could alter protein functions through truncation or fusion of canonical ORFs. In addition, we detect RNAs that bypass canonical cleavage sites and generate potential chimeric proteins by linking distinct gene transcription units. Among these chimeric proteins we detected an evolutionarily conserved protein containing the N-terminus of E4orf6 fused to the downstream DBP/E2A ORF. Loss of this novel protein, E4orf6/DBP, was associated with aberrant viral replication center morphology and poor viral spread. Our work highlights how long-read sequencing technologies combined with mass spectrometry can reveal further complexity within viral transcriptomes and resulting proteomes.


Asunto(s)
Adenoviridae , ARN Viral , Adenoviridae/genética , ADN Complementario , Humanos , Sistemas de Lectura Abierta/genética , Proteoma/metabolismo , Empalme del ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma
7.
J Immunol ; 209(5): 938-949, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948399

RESUMEN

RAG1/RAG2 (RAG) endonuclease-mediated assembly of diverse lymphocyte Ag receptor genes by V(D)J recombination is critical for the development and immune function of T and B cells. The RAG1 protein contains a ubiquitin ligase domain that stabilizes RAG1 and stimulates RAG endonuclease activity in vitro. We report in this study that mice with a mutation that inactivates the Rag1 ubiquitin ligase in vitro exhibit decreased rearrangements and altered repertoires of TCRß and TCRα genes in thymocytes and impaired thymocyte developmental transitions that require the assembly and selection of functional TCRß and/or TCRα genes. These Rag1 mutant mice present diminished positive selection and superantigen-mediated negative selection of conventional αß T cells, decreased genesis of invariant NK T lineage αß T cells, and mature CD4+ αß T cells with elevated autoimmune potential. Our findings reveal that the Rag1 ubiquitin ligase domain functions in vivo to stimulate TCRß and TCRα gene recombination and influence differentiation of αß T lineage cells, thereby establishing replete diversity of αß TCRs and populations of αß T cells while restraining generation of potentially autoreactive conventional αß T cells.


Asunto(s)
Proteínas de Homeodominio , Receptores de Antígenos de Linfocitos T alfa-beta , Ubiquitina , Animales , Linaje de la Célula , Endonucleasas/genética , Proteínas de Homeodominio/genética , Ligasas/genética , Ratones , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Superantígenos , Recombinación V(D)J/genética
8.
Nucleic Acids Res ; 50(3): 1201-1220, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34671803

RESUMEN

Eukaryotic cells recognize intracellular pathogens through pattern recognition receptors, including sensors of aberrant nucleic acid structures. Sensors of double-stranded RNA (dsRNA) are known to detect replication intermediates of RNA viruses. It has long been suggested that annealing of mRNA from symmetrical transcription of both top and bottom strands of DNA virus genomes can produce dsRNA during infection. Supporting this hypothesis, nearly all DNA viruses encode inhibitors of dsRNA-recognition pathways. However, direct evidence that DNA viruses produce dsRNA is lacking. Contrary to dogma, we show that the nuclear-replicating DNA virus adenovirus (AdV) does not produce detectable levels of dsRNA during infection. In contrast, abundant dsRNA is detected within the nucleus of cells infected with AdV mutants defective for viral RNA processing. In the presence of nuclear dsRNA, the cytoplasmic dsRNA sensor PKR is relocalized and activated within the nucleus. Accumulation of viral dsRNA occurs in the late phase of infection, when unspliced viral transcripts form intron/exon base pairs between top and bottom strand transcripts. We propose that DNA viruses actively limit dsRNA formation by promoting efficient splicing and mRNA processing, thus avoiding detection and restriction by host innate immune sensors of pathogenic nucleic acids.


Asunto(s)
Adenoviridae , Empalme del ARN , ARN Viral , Adenoviridae/genética , Adenoviridae/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
9.
Bioinformatics ; 38(11): 3113-3115, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35426900

RESUMEN

MOTIVATION: The chemical modification of ribonucleotides regulates the structure, stability and interactions of RNAs. Profiling of these modifications using short-read (Illumina) sequencing techniques provides high sensitivity but low-to-medium resolution i.e. modifications cannot be assigned to specific transcript isoforms in regions of sequence overlap. An alternative strategy uses current fluctuations in nanopore-based long read direct RNA sequencing (DRS) to infer the location and identity of nucleotides that differ between two experimental conditions. While highly sensitive, these signal-level analyses require high-quality transcriptome annotations and thus are best suited to the study of model organisms. By contrast, the detection of RNA modifications in microbial organisms which typically have no or low-quality annotations requires an alternative strategy. Here, we demonstrate that signal fluctuations directly influence error rates during base-calling and thus provides an alternative approach for identifying modified nucleotides. RESULTS: DRUMMER (Detection of Ribonucleic acid Modifications Manifested in Error Rates) (i) utilizes a range of statistical tests and background noise correction to identify modified nucleotides with high confidence, (ii) operates with similar sensitivity to signal-level analysis approaches and (iii) correlates very well with orthogonal approaches. Using well-characterized DRS datasets supported by independent meRIP-Seq and miCLIP-Seq datasets we demonstrate that DRUMMER operates with high sensitivity and specificity. AVAILABILITY AND IMPLEMENTATION: DRUMMER is written in Python 3 and is available as open source in the GitHub repository: https://github.com/DepledgeLab/DRUMMER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nanoporos , Programas Informáticos , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/química , Nucleótidos
10.
EMBO Rep ; 22(9): e52145, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34347354

RESUMEN

The APOBEC3 cytidine deaminases are implicated as the cause of a prevalent somatic mutation pattern found in cancer genomes. The APOBEC3 enzymes act as viral restriction factors by mutating viral genomes. Mutation of the cellular genome is presumed to be an off-target activity of the enzymes, although the regulatory measures for APOBEC3 expression and activity remain undefined. It is therefore difficult to predict circumstances that enable APOBEC3 interaction with cellular DNA that leads to mutagenesis. The APOBEC3A (A3A) enzyme is the most potent deaminase of the family. Using proteomics, we evaluate protein interactors of A3A to identify potential regulators. We find that A3A interacts with the chaperonin-containing TCP-1 (CCT) complex, a cellular machine that assists in protein folding and function. Importantly, depletion of CCT results in A3A-induced DNA damage and cytotoxicity. Evaluation of cancer genomes demonstrates an enrichment of A3A mutational signatures in cancers with silencing mutations in CCT subunit genes. Together, these data suggest that the CCT complex interacts with A3A, and that disruption of CCT function results in increased A3A mutational activity.


Asunto(s)
Chaperonina con TCP-1 , Citidina Desaminasa , Chaperonina con TCP-1/genética , Citidina Desaminasa/genética , Mutagénesis , Proteínas/genética
11.
Nat Methods ; 14(2): 135-139, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27941783

RESUMEN

Alignment is the first step in most RNA-seq analysis pipelines, and the accuracy of downstream analyses depends heavily on it. Unlike most steps in the pipeline, alignment is particularly amenable to benchmarking with simulated data. We performed a comprehensive benchmarking of 14 common splice-aware aligners for base, read, and exon junction-level accuracy and compared default with optimized parameters. We found that performance varied by genome complexity, and accuracy and popularity were poorly correlated. The most widely cited tool underperforms for most metrics, particularly when using default settings.


Asunto(s)
Plasmodium falciparum/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ARN/métodos , Benchmarking , Simulación por Computador , Exones , Genoma Humano , Humanos , Intrones , Anotación de Secuencia Molecular , Polimorfismo Genético , Empalme del ARN , Programas Informáticos
12.
Nucleic Acids Res ; 46(21): 11357-11369, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30357359

RESUMEN

Aberrant splicing is a hallmark of leukemias with mutations in splicing factor (SF)-encoding genes. Here we investigated its prevalence in pediatric B-cell acute lymphoblastic leukemias (B-ALL), where SFs are not mutated. By comparing these samples to normal pro-B cells, we found thousands of aberrant local splice variations (LSVs) per sample, with 279 LSVs in 241 genes present in every comparison. These genes were enriched in RNA processing pathways and encoded ∼100 SFs, e.g. hnRNPA1. HNRNPA1 3'UTR was most pervasively mis-spliced, yielding the transcript subject to nonsense-mediated decay. To mimic this event, we knocked it down in B-lymphoblastoid cells and identified 213 hnRNPA1-regulated exon usage events comprising the hnRNPA1 splicing signature in pediatric leukemia. Some of its elements were LSVs in DICER1 and NT5C2, known cancer drivers. We searched for LSVs in other leukemia and lymphoma drivers and discovered 81 LSVs in 41 additional genes. Seventy-seven LSVs out of 81 were confirmed using two large independent B-ALL RNA-seq datasets, and the twenty most common B-ALL drivers, including NT5C2, showed higher prevalence of aberrant splicing than of somatic mutations. Thus, post-transcriptional deregulation of SF can drive widespread changes in B-ALL splicing and likely contributes to disease pathogenesis.


Asunto(s)
Empalme Alternativo , Linfocitos B/metabolismo , Regulación Leucémica de la Expresión Génica , Ribonucleoproteína Nuclear Heterogénea A1/genética , Degradación de ARNm Mediada por Codón sin Sentido , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiones no Traducidas 3' , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Adulto , Linfocitos B/patología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Línea Celular Tumoral , Niño , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Exones , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Intrones , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Cultivo Primario de Células , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Factores de Empalme Serina-Arginina/antagonistas & inhibidores , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
13.
BMC Genomics ; 18(1): 602, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28797240

RESUMEN

BACKGROUND: Though Illumina has largely dominated the RNA-Seq field, the simultaneous availability of Ion Torrent has left scientists wondering which platform is most effective for differential gene expression (DGE) analysis. Previous investigations of this question have typically used reference samples derived from cell lines and brain tissue, and do not involve biological variability. While these comparisons might inform studies of tissue-specific expression, marked by large-scale transcriptional differences, this is not the common use case. RESULTS: Here we employ a standard treatment/control experimental design, which enables us to evaluate these platforms in the context of the expression differences common in differential gene expression experiments. Specifically, we assessed the hepatic inflammatory response of mice by assaying liver RNA from control and IL-1ß treated animals with both the Illumina HiSeq and the Ion Torrent Proton sequencing platforms. We found the greatest difference between the platforms at the level of read alignment, a moderate level of concordance at the level of DGE analysis, and nearly identical results at the level of differentially affected pathways. Interestingly, we also observed a strong interaction between sequencing platform and choice of aligner. By aligning both real and simulated Illumina and Ion Torrent data with the twelve most commonly-cited aligners in the literature, we observed that different aligner and platform combinations were better suited to probing different genomic features; for example, disentangling the source of expression in gene-pseudogene pairs. CONCLUSIONS: Taken together, our results indicate that while Illumina and Ion Torrent have similar capacities to detect changes in biology from a treatment/control experiment, these platforms may be tailored to interrogate different transcriptional phenomena through careful selection of alignment software.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia de ARN/métodos , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Bioinformatics ; 31(24): 3938-45, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26338770

RESUMEN

MOTIVATION: Because of the advantages of RNA sequencing (RNA-Seq) over microarrays, it is gaining widespread popularity for highly parallel gene expression analysis. For example, RNA-Seq is expected to be able to provide accurate identification and quantification of full-length splice forms. A number of informatics packages have been developed for this purpose, but short reads make it a difficult problem in principle. Sequencing error and polymorphisms add further complications. It has become necessary to perform studies to determine which algorithms perform best and which if any algorithms perform adequately. However, there is a dearth of independent and unbiased benchmarking studies. Here we take an approach using both simulated and experimental benchmark data to evaluate their accuracy. RESULTS: We conclude that most methods are inaccurate even using idealized data, and that no method is highly accurate once multiple splice forms, polymorphisms, intron signal, sequencing errors, alignment errors, annotation errors and other complicating factors are present. These results point to the pressing need for further algorithm development. AVAILABILITY AND IMPLEMENTATION: Simulated datasets and other supporting information can be found at http://bioinf.itmat.upenn.edu/BEERS/bp2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Empalme Alternativo , Perfilación de la Expresión Génica/métodos , Isoformas de ARN/análisis , Análisis de Secuencia de ARN/métodos , Animales , Benchmarking , Humanos , Ratones , ARN Mensajero/análisis
16.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38189780

RESUMEN

The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vß segment (Trbv1) impaired loop extrusion originating locally and extending to DßJß CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DßJß-bound RAG as the sole mechanism of Vß recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vß and DßJß segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.


Asunto(s)
Cromatina , Receptores de Antígenos , Cromatina/genética , Endonucleasas , Mutación , Regiones Promotoras Genéticas/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética
17.
bioRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091882

RESUMEN

Relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL) is a major cause of pediatric cancer-related deaths. Relapse-specific mutations do not account for all chemotherapy failures in B- ALL patients, suggesting additional mechanisms of resistance. By mining RNA-seq datasets of paired diagnostic/relapse pediatric B-ALL samples, we discovered pervasive alternative splicing (AS) patterns linked to relapse and affecting drivers of resistance to glucocorticoids, anti-folates, and thiopurines. Most splicing variations represented cassette exon skipping, "poison" exon inclusion, and intron retention, phenocopying well-documented loss-of-function mutations. In contrast, relapse-associated AS of NT5C2 mRNA yielded an isoform with the functionally uncharacterized in-frame exon 6a. Incorporation of the 8-amino acid sequence SQVAVQKR into this enzyme created a putative phosphorylation site and resulted in elevated nucleosidase activity, which is a known consequence of gain-of-function mutations in NT5C2 and a common determinant of 6-mercaptopurine (6-MP) resistance. Consistent with this finding, NT5C2ex6a and the R238W hotspot variant conferred comparable levels of resistance to 6-MP in B-ALL cells both in vitro and in vivo. Furthermore, both the NT5C2ex6a and R238W variants induced collateral sensitivity to the inosine monophosphate dehydrogenase (IMPDH) inhibitor mizoribine. These results ascribe an important role for splicing perturbations in chemotherapy resistance in relapsed B-ALL and suggest that IMPDH inhibitors, including the commonly used immunosuppressive agent mycophenolate mofetil, could be a valuable therapeutic option for treating thiopurine-resistant leukemias.

18.
Cancer Res ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094066

RESUMEN

Relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL) is a major cause of pediatric cancer-related deaths. Relapse-specific mutations do not account for all chemotherapy failures in B-ALL patients, suggesting additional mechanisms of resistance. By mining RNA-seq datasets of paired diagnostic/relapse pediatric B-ALL samples, we discovered pervasive alternative splicing (AS) patterns linked to relapse and affecting drivers of resistance to glucocorticoids, anti-folates, and thiopurines. Most splicing variations represented cassette exon skipping, "poison" exon inclusion, and intron retention, phenocopying well-documented loss-of-function mutations. In contrast, relapse-associated AS of NT5C2 mRNA yielded an isoform with the functionally uncharacterized in-frame exon 6a. Incorporation of the 8-amino acid sequence SQVAVQKR into this enzyme created a putative phosphorylation site and resulted in elevated nucleosidase activity, which is a known consequence of gain-of-function mutations in NT5C2 and a common determinant of 6-mercaptopurine (6-MP) resistance. Consistent with this finding, NT5C2ex6a and the R238W hotspot variant conferred comparable levels of resistance to 6-MP in B-ALL cells both in vitro and in vivo. Furthermore, both the NT5C2ex6a and R238W variants induced collateral sensitivity to the inosine monophosphate dehydrogenase (IMPDH) inhibitor mizoribine. These results ascribe an important role for splicing perturbations in chemotherapy resistance in relapsed B-ALL and suggest that IMPDH inhibitors, including the commonly used immunosuppressive agent mycophenolate mofetil, could be a valuable therapeutic option for treating thiopurine-resistant leukemias.

19.
bioRxiv ; 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38077016

RESUMEN

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.

20.
bioRxiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39149264

RESUMEN

Pediatric brain cancer is the leading cause of disease-related mortality in children, and many aggressive tumors still lack effective treatment strategies. Despite extensive studies characterizing these tumor genomes, alternative transcriptional splicing patterns remain underexplored. Here, we systematically characterized aberrant alternative splicing across pediatric brain tumors, identifying pediatric high-grade gliomas (HGGs) among the most heterogeneous. Through integration with UniProt Knowledgebase annotations, we identified 12,145 splice events in 5,424 genes, leading to functional changes in protein activation, folding, and localization. We discovered that the master splicing factor and cell-cycle modulator, CDC-like kinase 1 ( CLK1 ), is aberrantly spliced in HGGs to include exon 4, resulting in a gain of two phosphorylation sites and subsequent activation of CLK1. Inhibition of CLK1 with Cirtuvivint in the pediatric HGG KNS-42 cell line significantly decreased both cell viability and proliferation in a dose-dependent manner. Morpholino-mediated depletion of CLK1 exon 4 splicing reduced RNA expression, protein abundance, and cell viability. Notably, KNS-42 cells treated with the CLK1 exon 4 morpholino demonstrated differential expression impacting 78 genes and differential splicing with loss or gain of a functional site in 193 genes annotated as oncogene or tumor suppressor genes (TSGs). These genes were enriched for cancer-associated pathways, with 15 identified as significant gene dependencies in pediatric HGGs. Our findings highlight a dependency of pediatric HGGs on CLK1 and its roles contributing to tumor splicing heterogeneity through transcriptional dysregulation of splicing factors and transcriptional modulation of oncogenes. Overall, aberrant splicing in HGGs and other pediatric brain tumors represents a potentially targetable oncogenic pathway contributing to tumor growth and maintenance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA