RESUMEN
The bacterial pathogen Legionella pneumophila creates an intracellular niche permissive for its replication by extensively modulating host-cell functions using hundreds of effector proteins delivered by its Dot/Icm secretion system1. Among these, members of the SidE family (SidEs) regulate several cellular processes through a unique phosphoribosyl ubiquitination mechanism that bypasses the canonical ubiquitination machinery2-4. The activity of SidEs is regulated by another Dot/Icm effector known as SidJ5; however, the mechanism of this regulation is not completely understood6,7. Here we demonstrate that SidJ inhibits the activity of SidEs by inducing the covalent attachment of glutamate moieties to SdeA-a member of the SidE family-at E860, one of the catalytic residues that is required for the mono-ADP-ribosyltransferase activity involved in ubiquitin activation2. This inhibition by SidJ is spatially restricted in host cells because its activity requires the eukaryote-specific protein calmodulin (CaM). We solved a structure of SidJ-CaM in complex with AMP and found that the ATP used in this reaction is cleaved at the α-phosphate position by SidJ, which-in the absence of glutamate or modifiable SdeA-undergoes self-AMPylation. Our results reveal a mechanism of regulation in bacterial pathogenicity in which a glutamylation reaction that inhibits the activity of virulence factors is activated by host-factor-dependent acyl-adenylation.
Asunto(s)
Calmodulina/metabolismo , Ácido Glutámico/metabolismo , Legionella pneumophila/enzimología , Legionella pneumophila/metabolismo , Ubiquitinación , ADP-Ribosilación , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Coenzimas/metabolismo , Células HEK293 , Humanos , Legionella pneumophila/citología , Modelos Moleculares , Ubiquitina/química , Ubiquitina/metabolismoRESUMEN
Modular synthesis can combine different functional modules to flexibly regulate comprehensive properties and study the diversity of compounds. This study established a modular bicyclic synthesis strategy of combining polynitro energetic module with iodine-containing biocidal module. Compounds 1-6 with high iodine content (48.72-69.56 %) and high thermal stability (Td: 172-304 °C) were synthesized and exhaustively identified. By modular synthesis, the detonation properties and gas-production of 3-6 improved greatly expanding their biocidal efficacy and maintained the iodine atomic utilization of iodine-containing module. Notably, 4,5-diiodo-3,4',5'-trinitro-1,3'-bipyrazole (5) and 3,5-diiodo-4,4',5'-trinitro-1,3'-bipyrazole (6) exhibit high detonation velocities (D: 5903â m s-1, 5769â m s-1, respectively) and highest gas production of 212.85â L mol-1 and 217.66â L mol-1 after decomposition. This study diversifies polyiodio-nitro compounds, and also inspire the implementation of similar synthesis strategies to provide family-level synthetic solutions to energetic biocidal materials.
RESUMEN
Energetic compounds that display high thermal stability and insensitivity properties are essential for applications in mining, gas drilling, etc. In this work, a novel 4-nitro-5-aminoisoxazole energetic moiety oriented to enhance thermal stability and decrease the sensitivity of furazan/furoxan analogues was constructed. The generation of a vicinal amino-nitro structure can be effectively realized in one step by a green and mild ring-closing reaction of nitroacetonitrile potassium salt with chloroxime in aqueous solution. Seven new energetic compounds with good thermal stability (Td: 155.8â¼270.3 °C) and low sensitivity (IS: >40 J, FS: 96â¼192 N) were synthesized. The nitro-furazan and isoxazole combined product exhibits the advantages of both skeletons, with energetic properties (Dv = 8350 m s-1, P = 30.1 GPa) that may find value in insensitive energetic materials. This strategy promises to achieve a balance between energy levels and stability of furazan/furoxan analogues and offers a new way for the design and synthesis of highly thermally stable compounds that meet special applications.
RESUMEN
Safety is fundamental for the practical development and application of energetic materials. Three tricyclic energetic compounds, namely, 1,3-di(1H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (ATDT), 5'-nitro-3-(1H-tetrazol-5-yl)-2'H-[1,3'-bi(1,2,4-triazol)]-5-amine (ATNT), and 1-(3,4-dinitro-1H-pyrazol-5-yl)-3-(1H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (ATDNP), were effectively synthesized through a simple two-step synthetic route. The introduction of intramolecular hydrogen bonds resulted in excellent molecular planarity for the three new compounds. Additionally, they exhibit regular crystal packing, leading to numerous intermolecular hydrogen bonds and π-π interactions. Benefiting from planar tricyclic structural features, ATDT, ATNT, and ATDNP are insensitive (IS > 60 J, FS = 360 N) when exposed to external stimuli. Furthermore, ATNT (Td = 361.1 °C) and ATDNP (Td = 317.0 °C) exhibit high decomposition temperatures and satisfying detonation performance. The intermolecular hydrogen bonding that produced this planar tricyclic molecular structure serves as a model for the creation of innovative multiple heterocycle energetic materials with excellent stability.
Asunto(s)
Aminas , Vendajes , Enlace de Hidrógeno , HidrógenoRESUMEN
The recovery of rare earth elements (REEs) including neodymium (Nd) and dysprosium (Dy) from NdFeB permanent magnets has become one of the main ways to solve the increased demand for rare earth. Herein, n-dodecyl phosphate (DPPA) was used for the first time as the adsorption functional group donor, sodium alginate as the substrate, and calcium chloride solution as the reactive solvent, a hybrid hydrogel adsorbent DPPA/CaALG was synthesized by sol-gel method for application in the adsorption and separation of Nd and Dy from the Co-Nd-Dy ternary system. SEM-EDS, and N2 adsorption-desorption analysis showed the successful preparation of DDPA/CaALG with mesoporous structure. Batch experiments showed the superiority of the hybrid hydrogel for the good selective adsorption of Nd and Dy, such as large adsorption capacity (Nd: 162.5 mg/g, Dy: 183.5 mg/g), and no adsorption for Co. FT-IR, XPS showed that PO and P-O groups are involved in the adsorption process of Nd and Dy as electron acceptors, where the ion exchange of P-OH is dominant. Furthermore, the chemical properties of ligands and complexes were analyzed by Density Functional Theory (DFT) calculations and revealed their adsorption behaviors as well as the competition between different metal ions.
Asunto(s)
Metales de Tierras Raras , Neodimio , Disprosio , Hidrogeles , Adsorción , Alginatos , Espectroscopía Infrarroja por Transformada de Fourier , FosfatosRESUMEN
Three new compounds based on the combination of furoxan (1,2,5-oxadiazole N-oxide) and oxa-[5,5]bicyclic ring were synthesized. Among them, the nitro compound showed satisfactory detonation properties (Dv, 8565 m s-1; P, 31.9 GPa), which is comparable to the performance of RDX (a classic high-energy secondary explosive). Additionally, the introduction of the N-oxide moiety and oxidation of the amino group more effectively improved the oxygen balance and density (d, 1.81 g cm-3; OB%, +2.8%) of the compounds compared to furazan analogues. Combined with good density and oxygen balance as well as moderate sensitivity, this type of furoxan and oxa-[5,5]bicyclic structure will open up a platform for the synthesis and design of new high-energy materials.
Asunto(s)
Sustancias Explosivas , Oxadiazoles , Óxidos , OxígenoRESUMEN
The instability and volatility of iodine is high, however, effective iodine biocidal species can be readily stored in iodinated azoles and then be released upon decomposition or detonation. Iodine azoles with high iodine content and high thermal stability are highly desired. In this work, the strategy of methylene bridging with asymmetric structures of 3,4,5-triiodo-1-H-pyrazole (TIP), 2,4,5-triiodo-1H-imidazol (TIM), and tetraiodo-1H-pyrrole (TIPL) are proposed. Two highly stable fully iodinated methylene-bridged azole compounds 3,4,5-triiodo-1-((2,4,5-triiodo-1H-imidazol-1-yl)methyl)-1H-pyrazole (3) and 3,4,5-triiodo-1-((tetraiodo-1H-pyrrol-1-yl)methyl)-1H-pyrazole (4) were obtained with high iodine content and excellent thermal stability (iodine content: 84.27% for compound 3 and 86.48% for compound 4; Td: 3: 285 °C, 4: 260 °C). Furthermore, their composites with high-energy oxidant ammonium perchlorate (AP) were designed. The combustion behavior and thermal decomposition properties of the formulations were tested and evaluated. This work may open a new avenue to develop advanced energetic biocidal materials with well-balanced energetic and biocidal properties and versatile functionality.
Asunto(s)
Azoles , Yodo , Azoles/farmacología , Yodo/farmacología , Yodo/química , Pirroles , Fenómenos Químicos , PirazolesRESUMEN
The effective removal of radioactive strontium (especially 90Sr) from nuclear wastewater is crucial to environmental safety. Nevertheless, materials with excellent selectivity in Sr removal remain a challenge since the similarity with alkaline earth metal ions in the liquid phase. In this work, a novel titanium phosphate (TiP) aerogel was investigated for Sr(II) removal from the radioactive wastewater based on the sol-gel method and supercritical drying technique. The TiP aerogel has amorphous, three-dimensional and mesoporous structures with abundant phosphate groups, which was confirmed by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FT-IR). The adsorbent exhibited high efficiency and selectivity for the removal of Sr(II) with an extensive distribution coefficient up to 4740.03 mL/g. The adsorption equilibrium reached within 10 min and the maximum adsorption capacity was 373.6 mg/g at pH 5. And the kinetics and thermodynamics data fitted well with the pseudo-second-order model and Langmuir model respectively. It can be attributed to the rapid trapping and slow intraparticle diffusion of Sr(II) inside the mesoporous channels of the TiP aerogel. Furthermore, TiP aerogel exhibited over 80% removal for 50 mg/L Sr2+ in real water systems (seawater, lake water and tap water). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy revealed that strong ionic bonding formed during Sr(II) adsorption with the phosphate group on TiP aerogel. These results indicated that TiP aerogel is a promising high-capacity adsorbent for the effective and selective capture of Sr(II) from radioactive wastewater.
Asunto(s)
Estroncio , Contaminantes Químicos del Agua , Estroncio/análisis , Aguas Residuales/química , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Contaminantes Químicos del Agua/química , Agua/química , Cinética , Fosfatos , Concentración de Iones de HidrógenoRESUMEN
BACKGROUND: Among the major transcription factors, SPL plays a crucial role in plant growth, development, and stress response. Foxtail millet (Setaria italica), as a C4 crop, is rich in nutrients and is beneficial to human health. However, research on the foxtail millet SPL (SQUAMOSA PROMOTER BINDING-LIKE) gene family is limited. RESULTS: In this study, a total of 18 SPL genes were identified for the comprehensive analysis of the whole genome of foxtail millet. These SiSPL genes were divided into seven subfamilies (I, II, III, V, VI, VII, and VIII) according to the classification of the Arabidopsis thaliana SPL gene family. Structural analysis of the SiSPL genes showed that the number of introns in subfamilies I and II were much larger than others, and the promoter regions of SiSPL genes were rich in different cis-acting elements. Among the 18 SiSPL genes, nine genes had putative binding sites with foxtail millet miR156. No tandem duplication events were found between the SiSPL genes, but four pairs of segmental duplications were detected. The SiSPL genes expression were detected in different tissues, which was generally highly expressed in seeds development process, especially SiSPL6 and SiSPL16, which deserve further study. The results of the expression levels of SiSPL genes under eight types of abiotic stresses showed that many stress responsive genes, especially SiSPL9, SiSPL10, and SiSPL16, were highly expressed under multiple stresses, which deserves further attention. CONCLUSIONS: In this research, 18 SPL genes were identified in foxtail millet, and their phylogenetic relationships, gene structural features, duplication events, gene expression and potential roles in foxtail millet development were studied. The findings provide a new perspective for the mining of the excellent SiSPL gene and the molecular breeding of foxtail millet.
Asunto(s)
Setaria (Planta) , Regulación de la Expresión Génica de las Plantas , Humanos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/metabolismo , Estrés Fisiológico/genéticaRESUMEN
For a very long time, frequent occurrences of biocrises have wreaked havoc on human beings, animals, and the environment. As a result, it is necessary to develop biocidal agents to destroy or neutralize active agents by releasing large amounts of strong biocides which are obtained upon detonation. Iodine is an efficient biocidal agent for bacteria, fungi, yeasts, viruses, spores, and protozoan parasites, and it is the sole element in the periodic table that can destroy microbes without contaminating the environment. Based on chemical biology, the mechanism of iodine as a bactericide may arise from oxidation and iodination reactions of cellular proteins and nucleic acids. However, because of the high vapor pressure causing elemental iodine to sublime readily at room temperature, it is inconvenient to use this material in its normal solid state directly as a biocidal agent under ambient conditions. Iodine-rich compounds where iodine is firmly bonded in molecules as a C-I or I-O moiety have been observed to be among the most promising energetic biocidal compounds. Gaseous products comprised of large amounts of iodine or iodine-containing components as strong biocides are released in the decomposition or explosion of iodine-rich compounds. Because of the detonation pressure, the iodine species are distributed over a large area greatly improving the efficacy of the system and requiring considerably less effort compared to traditional biocidal methods. The commercially available tetraiodomethane and tetraiodoethene, which possess superb iodine content also have the disadvantages of volatility, light sensitivity, and chemically reactivity, and therefore, are not suitable for use directly as biocidal agents. It is absolutely critical to synthesize new iodine-rich compounds with good thermal and chemical stabilities.In this Account, we describe our strategies for the syntheses of energetic iodine-rich compounds while maintaining the maximum iodine content with concomitant stability and routes for the synthesis of oxygen-containing iodine-rich compounds to improve the oxygen balance and achieve both high-energy and high-iodine content. In the other work, which involves cocrystals, iodine-containing polymers were also summarized. It is hoped that this Account will provide guidelines for the design and syntheses of new iodine-rich compounds and a route for the development of inexpensive, more efficient, and safer iodine-rich antibiological warfare agents of the future.
Asunto(s)
Desinfectantes/química , Compuestos de Yodo/química , Bacterias/efectos de los fármacos , Desinfectantes/síntesis química , Desinfectantes/farmacología , Compuestos de Yodo/síntesis química , Compuestos de Yodo/farmacología , Estructuras Metalorgánicas , Oxidación-Reducción , Triazoles/químicaRESUMEN
As life becomes richer day by day, the requirement for quality industrial products is becoming greater and greater. Therefore, image anomaly detection on industrial products is of significant importance and has become a research hotspot. Industrial manufacturers are also gradually intellectualizing how product parts may have flaws and defects, and that industrial product image anomalies have characteristics such as category diversity, sample scarcity, and the uncertainty of change; thus, a higher requirement for image anomaly detection has arisen. For this reason, we proposed a method of industrial image anomaly detection that applies a generative adversarial network based on attention feature fusion. For the purpose of capturing richer image channel features, we added attention feature fusion based on an encoder and decoder, and through skip-connection, this performs the feature fusion for the encode and decode vectors in the same dimension. During training, we used random cut-paste image augmentation, which improved the diversity of the datasets. We displayed the results of a wide experiment, which was based on the public industrial detection MVTec dataset. The experiment illustrated that the method we proposed has a higher level AUC and the overall result was increased by 4.1%. Finally, we realized the pixel level anomaly localization of the industrial dataset, which illustrates the feasibility and effectiveness of this method.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Industrias , IncertidumbreRESUMEN
The trinitromethyl moiety is a useful group for the design and development of novel energetic compounds with high nitrogen and oxygen content. In this work, by using an improved nitration method, the dinitromethyl precursor was successfully nitrated to the trinitromethyl product (2), and its structure was thoroughly characterized by FTIR, NMR, elemental analysis, differential scanning calorimetry, and single-crystal X-ray diffraction. Compound 2 has a high density (1.897 g cm-3), high heat of formation (984.8 kJ mmol-1), and a high detonation performance (D: 9351 m s-1, P: 37.46 GPa) that may find useful applications in the field of high energy density materials.
Asunto(s)
Sustancias Explosivas , Oxadiazoles , Cristalografía por Rayos X , Sustancias Explosivas/química , Nitrógeno , Oxadiazoles/química , Oxígeno/químicaRESUMEN
Oxygen balance and heat of formation are closely related to the nitrogen and oxygen content in a molecule and have a significant effect on the detonation performance of energetic materials. Here a new family of 1,2,4-triazolo [4,3-b][1,2,4,5]-tetrazine containing gem-dinitromethyl and nitroamine with high nitrogen-oxygen content was synthesized and characterized. Moreover, the structure of the guanidine salt (3) and TATOT salt (4) were confirmed by single-crystal X-ray diffraction. The nitrogen and oxygen content of ammonium salt 2 reached 82.5%, with a high density (1.805 g cm-3) and high detonation properties (D = 8900 m s-1; P = 32.4 GPa), which were similar to those of RDX.
Asunto(s)
Nitrógeno , Oxígeno , Oxígeno/química , Cristalografía por Rayos X , Análisis de los Gases de la Sangre , GuanidinasRESUMEN
The nitration of chitin monomer in a mixture of nitric acid and acetic anhydride was conducted and a highly nitrated (3R,4R,6R)-3-acetamido-6-((nitrooxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl trinitrate (1) was obtained. Its structure was fully characterized using infrared spectroscopy, NMR spectroscopy, elemental analysis, and X-ray diffraction. Compound 1 possesses good density (ρ: 1.721 g·cm-3) and has comparable detonation performance (Vd: 7717 m·s-1; P: 25.6 GPa) to that of nitrocellulose (NC: Vd: 7456 m·s-1; P: 23 GPa; Isp = 239 s) and microcrystalline nitrocellulose (MCNC; Vd: 7683 m·s-1; P: 25 GPa; Isp = 250 s). However, Compound 1 has much lower impact sensitivity (IS: 15 J) than the regular nitrocellulose (NC; IS: 3.2 J) and MCNC (IS: 2.8 J). Compound 1 was calculated to exhibit a good specific impulse (Isp: 240 s), which is comparable with NC (Isp: 239 s) and MCNC (Isp: 250 s). By replacing the nitrocellulose with Compound 1 in typical propellants JA2, M30, and M9, the specific impulse was improved by up to 4 s. These promising properties indicate that Compound 1 has a significant potential as an energetic component in solid propellants.
RESUMEN
Atomically precise o-carboranealkynyl-protected clusters [Ag14(C4B10H11)12(CH3CN)2]·2NO3 (CBA-Ag) and [Cu6Ag8(C4B10H11)12Cl]NO3 (CBA-CuAg) have been found to exhibit hypergolic activity, such that they are capable of spontaneous ignition and combustion upon contact with the white fuming nitric acid oxidizer. In particular, CBA-CuAg has a short ignition delay time of 15 ms, whereas the o-carboranealkynyl ligand is hypergolically inert. Systematic investigation revealed that the metal cluster core catalyzed the hypergolic behavior of inert o-carboranealkynyl ligand, and Cu doping further accelerated combustion catalysis. This work provides a new prospective in the rational design of novel metal cluster-based hypergolic fuels for propellant application.
RESUMEN
Nitroamino-functionalized 1,2,4-triazolo[4,3- b][1,2,4,5]tetrazine (1), when combined with intermolecular hydrogen bonds (HBs) and strong noncovalent interactions between layers, results, for example, in an interlayer distance of 2.9 Å for dihydroxylammonium 3,6-dinitramino-1,2,4-triazolo[4,3- b][1,2,4,5]tetrazine (2c) with a packing coefficient of 0.805. For dihydroxylammonium 6,6'-dinitramino-3,3'-azo-1,2,4-triazolo[4,3- b][1,2,4,5]tetrazine (3b), two fused rings are linked by an azo group, which expands the conjugated system resulting in an even shorter interlayer distance of 2.7 Å and a higher packing coefficient of 0.807. These values appear to be the shortest interlayer distances and the highest packing coefficients reported for tetrazine energetic materials. With high packing coefficients, both possess high densities of 1.92 g cm-3 and 1.99 g cm-3 at 293 K, respectively. Compared with its precursor, the hydroxylammonium moiety serves as a buffer chain (H-N-O-H), connecting the anion and cation through hydrogen bonds, giving rise to more favorable stacking, and resulting in higher density and lower sensitivity. The sensitivities of all the hydroxylammonium salts are lower than that of their neutral precursors, such as compound 2 (3 J, >5 N) and compound 2c (25 J, 360 N). The detonation properties of 2c (detonation velocity vD = 9712 m s-1 and detonation pressure P = 43 GPa) and 3b (vD = 10233 m s-1; P = 49 GPa) exceed those of present high explosive benchmarks, such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexanitrohexaazaisowurzitane (CL-20). The molecular structures of several of these new energetic materials are confirmed by single-crystal X-ray diffraction measurements. Using calculated and experimental results, the fused ring with a planar large π-conjugated system results in a compromise between desirable stabilities and high detonation properties, thus enhancing future utilization in the design of energetic materials.
RESUMEN
The exploitation of C-C activation to facilitate chemical reactions is well-known in organic chemistry. Traditional strategies in homogeneous media rely upon catalyst-activated or metal-mediated C-C bonds leading to the design of new processes for applications in organic chemistry. However, activation of a C-C bond, compared with C-H bond activation, is a more challenging process and an underdeveloped area because thermodynamics does not favor insertion into a C-C bond in solution. Carbon-carbon bond cleavage through loss of an oxime moiety has not been reported. In this paper, a new observation of self-coupling via C-C bond cleavage with concomitant loss of oxime in the absence of metals (either metal-complex mediation or catalysis) results in dihydroxylammonium 5,5-bistetrazole-1,10-diolate (TKX-50) as well as N, N'-([3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl)dinitramine, a potential candidate for a new generation of energetic materials.
RESUMEN
A family of 3,3'-bipyrazole-based energetic compounds having C-NO2 /N-NO2 functionalities was synthesized by using various nitrating conditions. These nitro derivatives of bipyrazole are significantly more dense and energetic compared to the corresponding nitropyrazole analogues while maintaining the desired thermal stability and sensitivity. Depending on the number and nature of energetic nitro groups (C-NO2 /N-NO2 ), different classes of energetic materials, such as green primary explosives, high-performance secondary explosives and heat-resistant explosives, were obtained. All the compounds were thoroughly characterized by IR, NMR [1 H, 13 C{1 H}, 15 N], elemental analysis, and differential scanning calorimetry (DSC). Four were also structurally characterized with single-crystal X-ray diffraction studies. Heats of formation and detonation performance were calculated using Gaussianâ 03 and EXPLO5 v6.01 programs, respectively.
RESUMEN
Biohazards and chemical hazards as well as radioactive hazards have always been a threat to human health. The search for solutions to these problems is an ongoing worldwide effort. In order to control biohazards by chemical methods, a synthetically useful fused tricyclic iodine-rich compound, 2,6-diiodo-3,5-dinitro-4,9-dihydrodipyrazolo [1,5- a:5',1'- d][1,3,5]triazine (5), with good detonation performance was synthesized, characterized, and its properties determined. This compound which acts as an agent defeat weapon has been shown to destroy certain microorganisms effectively by releasing iodine after undergoing decomposition or combustion. The small iodine residues remaining will not be deleterious to human life after 1 month.
Asunto(s)
Desinfectantes/farmacología , Sustancias Explosivas/farmacología , Yodo/química , Triazinas/farmacología , Desinfectantes/síntesis química , Desinfectantes/química , Escherichia coli/efectos de los fármacos , Sustancias Explosivas/síntesis química , Sustancias Explosivas/química , Calefacción , Staphylococcus aureus/efectos de los fármacos , Triazinas/síntesis química , Triazinas/químicaRESUMEN
Gem-trinitromethyl groups were introduced into a 1,3,4-oxadiazole ring to give the first example of a bifunctionalized single five-membered ring with six nitro groups. 2,5-Bis(trinitromethyl)-1,3,4-oxadiazole (12) has a high calculated crystal density of 2.007 g cm-3 at 150 K (1.941 g cm-3 at 293 K) and a very high positive oxygen balance (39.12%), which makes it a strong candidate as a high energy dense oxidizer. The dihydroxylammonium and dihydrazinium salts of bis(trinitromethyl)-1,3,4-oxadiazole (5 and 6) exhibit excellent calculated detonation properties (5, vD = 9266 m s-1, P = 38.9 GPa; 6, vD = 8900 m s-1, P = 36.3 GPa) and acceptable impact sensitivities (5 20 J, 6 19 J), which are superior to those of RDX (7.4 J) and HMX (7.4 J). Such attractive features support the application potential of the gem-polynitromethyl group in the design of advanced energetic materials. Surprisingly, 2,5-bis(trinitromethyl)-1,3,4-oxadiazole (12) is more thermally stable and less sensitive than its bis(dinitromethyl) analogue, 8.