RESUMEN
Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.
RESUMEN
Understanding the direct transformation from graphite to diamond has been a long-standing challenge with great scientific and practical importance. Previously proposed transformation mechanisms1-3, based on traditional experimental observations that lacked atomistic resolution, cannot account for the complex nanostructures occurring at graphite-diamond interfaces during the transformation4,5. Here we report the identification of coherent graphite-diamond interfaces, which consist of four basic structural motifs, in partially transformed graphite samples recovered from static compression, using high-angle annular dark-field scanning transmission electron microscopy. These observations provide insight into possible pathways of the transformation. Theoretical calculations confirm that transformation through these coherent interfaces is energetically favoured compared with those through other paths previously proposed1-3. The graphite-to-diamond transformation is governed by the formation of nanoscale coherent interfaces (diamond nucleation), which, under static compression, advance to consume the remaining graphite (diamond growth). These results may also shed light on transformation mechanisms of other carbon materials and boron nitride under different synthetic conditions.
RESUMEN
Traditional ceramics or metals cannot simultaneously achieve ultrahigh strength and high electrical conductivity. The elemental carbon can form a variety of allotropes with entirely different physical properties, providing versatility for tuning mechanical and electrical properties in a wide range. Here, by precisely controlling the extent of transformation of amorphous carbon into diamond within a narrow temperature-pressure range, we synthesize an in situ composite consisting of ultrafine nanodiamond homogeneously dispersed in disordered multilayer graphene with incoherent interfaces, which demonstrates a Knoop hardness of up to ~53 GPa, a compressive strength of up to ~54 GPa and an electrical conductivity of 670-1,240 S m-1 at room temperature. With atomically resolving interface structures and molecular dynamics simulations, we reveal that amorphous carbon transforms into diamond through a nucleation process via a local rearrangement of carbon atoms and diffusion-driven growth, different from the transformation of graphite into diamond. The complex bonding between the diamond-like and graphite-like components greatly improves the mechanical properties of the composite. This superhard, ultrastrong, conductive elemental carbon composite has comprehensive properties that are superior to those of the known conductive ceramics and C/C composites. The intermediate hybridization state at the interfaces also provides insights into the amorphous-to-crystalline phase transition of carbon.
RESUMEN
Novel materials displaying multiple exceptional properties are the backbone of the advancement of various industries. In the field of carbon materials, the combination of different properties has been extensively developed to satisfy diverse application scenarios, for instance, conductivity paired with exceptional hardness, outstanding toughness coupled with super-hardness, or heat resistance combined with super-hardness. In this work, a new carbon allotrope, bcc-C40 carbon, was predicted and investigated using first-principles calculations based on density functional theory. The allotrope exhibits unique structural features, including a combination of sp3 hybridized diatomic carbon and four-fold carbon chains. The mechanical and dynamic stability of bcc-C40 carbon has been demonstrated by its elastic constants and phonon spectra. Additionally, bcc-C40 carbon exhibits remarkable mechanical properties, such as zero homogeneous Poisson's ratio, superhardness with a value of 58 GPa, and stress-adaptive toughening. The analysis of the electronic properties demonstrates that bcc-C40 carbon is a semiconductor with an indirect band gap of 3.255 eV within the HSE06 functional, which increases with the increase in pressure. At a pressure of 150 GPa, bcc-C40 carbon transforms into a direct band gap material. These findings suggest the prospective use of bcc-C40 carbon as a superhard material and a novel semiconductor.
RESUMEN
Carbon materials with full sp2-hybridized buckling is a major challenge pervading fundamental nanoscience and nanotechnology research. Carbon atoms that are sp2 hybridized prefer to form hexagonal rings, such as in carbon nanotubes and graphene, which are low-dimensional materials. The incorporation of heptagonal, octagonal, and/or larger rings into a hexagonal sp2 carbon meshwork has been identified as a strategy for assembling three-dimensional (3D) sp2 carbon crystals, and one of the typical representatives are Schwarzite carbons, which possess a negative surface Gaussian curvature as well as unique physical properties. Herein, a 3D Schwarzite carbon consisting of only sp2-buckled heptagonal carbon rings, which is referred to as Hepta-carbon, is proposed based on first-principles calculations. Hepta-carbon is mechanically and thermodynamically stable, and energetically more favourable than experimental graphdiyne, fullerene C20 and most Schwarzite carbons under ambient conditions. Molecular dynamics simulations indicate that Hepta-carbon exhibits high-temperature thermostability up to 1500 K. Band structure and mechanical property simulations indicate that Hepta-carbon is a semi-metallic material with electron conduction and exhibits impressive mechanical properties such as high strength with quasi-isotropy, high incompressibility similar to diamonds, elastic deformation behaviour under uniaxial stress, and high ductility. Hepta-carbon presents a porous network with a low mass density of 1.84 g cm-3 and connected channels with diameters of 3.3-6.1 Å. Theoretical simulations of gas adsorption energy demonstrate that Hepta-carbon can effectively adsorb and stabilize greenhouse gases, including N2O, CO2, CH4, and SF6.
RESUMEN
Mechanical properties of covalent materials can be greatly enhanced with strategy of nanostructuring. For example, the nanotwinned diamond with an isotropic microstructure of interweaved nanotwins and interlocked nanograins shows unprecedented isotropic mechanical properties. How the anisotropic microstructure would impact on the mechanical properties of diamond has not been fully investigated. Here, we report the synthesis of diamond from superaligned multiwalled carbon nanotube films under high pressure and high temperature. Structural characterization reveals preferentially oriented diamond nanotwin bundles with an average twin thickness of ca. 2.9 nm, inherited from the directional nanotubes. This diamond exhibits extreme mechanical anisotropy correlated with its microstructure (e.g., the average Knoop hardness values measured with the major axis of the indenter perpendicular and parallel to nanotwin bundles are 233 ± 8 and 129 ± 9 GPa, respectively). Molecular dynamics simulation reveals that, in the direction perpendicular to the nanotwin bundles, the dense twin boundaries significantly hinder the motion of dislocations under indentation, while such a resistance is much weaker in the direction along the nanotwin bundles. Current work verifies the hardening effect in diamond via nanostructuring. In addition, the mechanical properties can be further tuned (anisotropy) with microstructure design and modification.
RESUMEN
Compared with traditional structure prediction methods, the purposeful bottom-up approach is better able to obtain structures with specified performance. In this study, we established two novel carbon phases in purely sp2-bonded networks, termed H61-carbon and H62-carbon, using a self-assembling approach. These carbyne-connected carbon allotropes had helix chains joined by cumulative double-bond chains. We certified the new carbon allotropes to be dynamically and mechanically stable. Both of these carbon allotropes exhibited excellent mechanical properties, and they had metallic and superconductive characteristics featuring superconducting transition temperatures of 10 K (H61-carbon) and 7.4 K (H62-carbon), respectively. These results provide an important strategy for the design of novel carbon allotropes with specified properties.
RESUMEN
Three novel hexagonal Si-C-N structures, namely SiC3N3, SiC7N6, and SiC13N14, were constructed on the basis of the α-Si3N4 crystal structure. The stability of the three structures is demonstrated by analyzing their elastic constants and phonon dispersion spectra and by calculating their formation energies. The calculated band structures and partial densities of states suggest that the SiC3N3 and SiC7N6 structures possess hole conductivity. The electron orbital analyses indicate that the SiC3N3 and SiC7N6 crystals possess three-dimensional and one-dimensional conductivity, respectively. SiC13N14 is a semiconductor with a wide bandgap of 4.39 eV. Based on two different hardness models and indentation shear stress calculations, the Vickers hardness values of SiC3N3, SiC7N6, and SiC13N14 are estimated to be 28.04/28.45/16.18 GPa, 31.17/34.19/20.24 GPa, and 40.60/41.59/36.40 GPa. This result indicates that SiC3N3 and SiC7N6 are conductive hard materials while SiC13N14 is a quasi superhard material.
RESUMEN
As an important phase-change material, GeTe has many high-pressure phases as well, but its phase transitions under pressure are still lack of clarity. It is challenging to identify high-pressure GeTe crystal structures owing to the phase coexistence in a wide pressure range and the reversibility of phase transitions. Hence, first-principles calculations are required to provide further information in addition to limited experimental characterizations. In this work, a new orthorhombic Cmca GeTe high-pressure phase has been predicted via the CALYPSO method as the most energetically favorable phase in the pressure range between â¼30 and â¼38.5 GPa, which would update the GeTe high-pressure phase transition sequence. The crystal structure of the Cmca phase is composed of alternate stacking puckered layers of Ge six-membered rings and Te four-membered rings along the b direction. The high density of states near the Fermi level and delocalization of electrons from the two-dimensional electron localization function indicate a strong metallic property of the Cmca phase. Electron-phonon coupling calculations indicate that the Cmca phase is superconductive below â¼4.2 K at 35 GPa. The simulated x-ray diffraction pattern of the Cmca phase implies that this phase might coexist with the Pnma-boat phase under high pressure. These results offer further understanding on the high-pressure structural evolution and physical properties in GeTe and other IV-VI semiconductors.
RESUMEN
The traditional hardness-toughness tradeoff poses a substantial challenge for the development of superhard materials. Due to strong covalent bonds and intrinsic brittleness, the full advantage of microstructure engineering for enhanced mechanical properties requires further exploration in superhard materials. Here heterogeneous diamond-cBN composites were synthesized from a carefully prepared precursor (hBN microflakes uniformly wrapped by onion carbon nanoparticles) through phase transitions under high pressure and high temperature. The synthesized composites inherit the architecture of the precursors: cBN regions with an anisotropic profile that spans several micrometers laterally and several hundred nanometers in thickness are embedded in a nanograined diamond matrix with high-density nanotwins. A significantly high fracture toughness of 16.9 ± 0.8 MPa m1/2 is achieved, far beyond those of single-crystal diamond and cBN, without sacrificing hardness. A detailed TEM analysis revealed multiple toughening mechanisms closely related to the microstructure. This work sheds light on microstructure engineering in superhard materials for excellent mechanical properties.
RESUMEN
A previous study reported an observed unidentified graphite/hexagonal boron nitride (hBN) superlattice structure in special multilayer heterojunction devices via cross-sectional transmission electron microscopy [Haigh S. J. et al., Nat. Mater. 2012, 11, 764-767]. In this letter, we designed and confirmed two possible graphite/hBN superlattice structures (AA and Ab), which were probably the structures observed by the aforementioned experiment. The formation enthalpies of both structures were negative, indicating that they could be successfully synthesized as the previous experiment reported. The results also showed that both structures possessed dynamic stability and elastic stability. Importantly, the theoretical interlayer distances of AA and Ab were 3.34 and 3.30 Å, respectively, which were consistent with the experimental value of 3.32 Å. The X-ray diffraction patterns and Raman spectra of both structures were simulated to aid in distinguishing them. This study on the atomic structure of the graphite/hBN superlattice lays a foundation for further research and application of this material.
RESUMEN
Ternary boron-carbon-nitrogen (B-C-N) compounds are considered to possess hardness comparable to diamond and thermal stability comparable to c-BN. Explorations for desirable B-C-N phases have been continuous. However, the nonconductive properties of most B-C-N compounds narrow the applications of these compounds. Herein, we propose a sp2-sp3 hybridized phase of t-B2C3N2, which consists of diamond-like BC blocks connected with single N-N bonds. Elastic constants and phonon dispersion curves confirm that t-B2C3N2 is mechanically and dynamically stable. The structure processes 2D metallicity in a strong 3D network. Furthermore, hardness and electron-phonon calculations reveal that t-B2C3N2 is superhard and superconductive with a superconducting critical temperature reaching 2.3 K.
RESUMEN
Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to â¼3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of â¼5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to â¼200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.
RESUMEN
As an archetypal semimetal with complex and anisotropic Fermi surface and unusual electric properties (e.g., high electrical resistance, large magnetoresistance, and giant Hall effect), bismuth (Bi) has played a critical role in metal physics. In general, Bi displays diamagnetism with a high volumetric susceptibility ([Formula: see text]10-4). Here, we report unusual ferromagnetism in bulk Bi samples recovered from a molten state at pressures of 1.4-2.5 GPa and temperatures above [Formula: see text]1,250 K. The ferromagnetism is associated with a surprising structural memory effect in the molten state. On heating, low-temperature Bi liquid (L) transforms to a more randomly disordered high-temperature liquid (L') around 1,250 K. By cooling from above 1,250 K, certain structural characteristics of liquid L' are preserved in L. Bi clusters with characteristics of the liquid L' motifs are further preserved through solidification into the Bi-II phase across the pressure-independent melting curve, which may be responsible for the observed ferromagnetism.
RESUMEN
Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as â¼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness â¼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (â¼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, â¼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of â¼10-15 nm found in metals and alloys.
RESUMEN
Understanding the intermolecular interactions in the context of crystal packing is of fundamental significance in molecular materials science. Infrared (IR) spectroscopy can provide complementary structural information; however, it still remains a great challenge to accurately predict the molecular IR vibrations in the crystalline phase. Here we report a cluster-model approach to simulate the IR spectra of triazine-based molecular crystals via density functional theory (DFT) calculations. In the properly designed cluster models, the molecular IR vibrations are expressed by a representative unit, while the nearest-neighbouring molecules are treated as a "frozen shell" to mimic the surrounding crystallographic environments. Much smaller clusters can be built by considering the crystallographic equivalence in the unit cell, which are able to perform DFT calculations on more complicated crystal structures with endurable computational costs. The simulated spectra show excellent consistencies with the experimental ones, particularly providing an in-depth understanding of the vibrational modes closely related to hydrogen bonding. Most importantly, the selectively built clusters based on the crystallographically independent molecules in the unit cell allow us to perform specific IR-spectral simulations, by which their distinct hydrogen-bonding environments have been clearly revealed for the first time.
RESUMEN
A conspicuous amount of theoretical study has been published on the properties of carbon allotropes with alternate single and triple bonds, (-C[triple bond, length as m-dash]C-)n. However, theoretical characterizations of carbon allotropes with cumulative double bonds ([double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash])n is almost non-existent in literature. Based upon first-principles calculations, two new three-dimensional (3D) microporous carbon allotropes consisting of whorl chains connected by cumulative double bonds in a sp-sp2 hybrid framework have been proposed in this study. One of these structures, namely, Trig-C9 was obtained by an evolutionary particle swarm structural search, while the other structure, denoted as Trig-C15, was obtained by inserting double bonds into Trig-C9. Both the 3D sp-sp2 hybridized carbons have a trigonal structure with 9 and 15 atoms in the hexagonal primitive cells. The calculated results demonstrate that these polymorphs are thermodynamically, mechanically, and dynamically feasible. Trig-C9 and Trig-C15 are indirect semiconductors with band gaps of 2.70 eV and 1.25 eV, respectively. Their unique frameworks render them mechanical ductility and significant elastic anisotropy. These results open up new horizons for the exploration of new carbon phases with unique structural, mechanical, and electronic properties.
RESUMEN
Although polymeric graphitic carbon nitride (g-C3N4) has been widely studied as metal-free photocatalyst, the description of its structure still remains a great challenge. Fourier transform infrared (FTIR) spectroscopy can provide complementary structural information. In this paper, we reconsider the representative crystalline melamine and develop a strategic approach to theoretically calculate the IR vibrations of this triazine-based nitrogen-rich system. IR calculations were based on three different models: a single molecule, a 4-molecule unit cell, and a 32-molecule cluster, respectively. By this comparative study the contribution of the intermolecular weak interactions were elucidated in detail. An accurate and visualized description on the experimental FTIR spectrum has been further presented by a combinatorial vibration-mode assignment based on the calculated potential energy distribution of the 32-molecule cluster. The theoretical approach reported in this study opens the way to the facile and accurate assignment for IR vibrational modes of other complex triazine-based compounds, such as g-C3N4.
RESUMEN
We identify two sp(2) hybridized network models of carbon, namely GT-8 and CT-12, based on first-principles calculation results. Parallel nanoribbon rows of graphene and net C are found to be interlinked with orthogonal nanoribbons to construct GT-8 and CT-12, and their series of isomorphic analogs (named GTs and CTs) are assembled with the widening of the nanoribbon components. GTs and CTs are dynamically and mechanically stable and energetically more favorable than many previous sp(2) carbons, including K4, C20, and H6 carbon. They are two-dimensional conductors with insulating properties along the z-axis. Remarkably, GTs are superconductive with increased superconducting transition temperatures, Tc, as the nanoribbons widen. The Tcs of GT-8 and GT-16 are 5.2 and 14.0 K respectively, which are higher than that of boron-doped diamond under the same value of Coulomb pseudopotential µ*. They possess higher bulk moduli than graphite and behave as excellent ductile materials. The Young's modulus of GT-8 along the z-axis is comparable with that of graphene and it significantly increases as the nanoribbons widen.
RESUMEN
A monoclinic BC3 phase (denoted M-BC3) has been predicted using first principles calculations. The M-BC3 structure is formed by alternately stacking sequences of metallic BC-layers and insulating C atom layers, thus, the structure exhibits two-dimensional conductivity. Its stability has been confirmed by our calculations of the total energy, elastic constants, and phonon frequencies. The pressure of phase transition from graphite-like BC3 to M-BC3 is calculated to be 9.3 GPa, and the theoretical Vickers hardness of M-BC3 is 43.8 GPa, this value indicates that the compound is a potentially superhard material. By comparing Raman spectral calculations of M-BC3 and previously proposed structures with the experimental data, we speculate that the experimentally synthesized BC3 crystal may simultaneously contain M-BC3 and Pmma-b phases.