Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(19): e113639, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37565504

RESUMEN

WRKY transcription factors in plants are known to be able to mediate either transcriptional activation or repression, but the mechanism regulating their transcriptional activity is largely unclear. We found that group IId WRKY transcription factors interact with OBERON (OBE) proteins, forming redundant WRKY-OBE complexes in Arabidopsis thaliana. The coiled-coil domain of WRKY transcription factors binds to OBE proteins and is responsible for target gene selection and transcriptional repression. The PHD finger of OBE proteins binds to both histones and WRKY transcription factors. WRKY-OBE complexes repress the transcription of numerous stress-responsive genes and are required for maintaining normal plant growth. Several WRKY and OBE mutants show reduced plant size and increased drought tolerance, accompanied by increased expression of stress-responsive genes. Moreover, expression levels of most of these WRKY and OBE genes are reduced in response to drought stress, revealing a previously uncharacterized regulatory mechanism of the drought stress response. These results suggest that WRKY-OBE complexes repress transcription of stress-responsive genes, and thereby balance plant growth and stress tolerance.


Asunto(s)
Arabidopsis , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Filogenia
2.
EMBO J ; 39(7): e102008, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32115743

RESUMEN

Deposition of H2A.Z in chromatin is known to be mediated by a conserved SWR1 chromatin-remodeling complex in eukaryotes. However, little is known about whether and how the SWR1 complex cooperates with other chromatin regulators. Using immunoprecipitation followed by mass spectrometry, we found all known components of the Arabidopsis thaliana SWR1 complex and additionally identified the following three classes of previously uncharacterized plant-specific SWR1 components: MBD9, a methyl-CpG-binding domain-containing protein; CHR11 and CHR17 (CHR11/17), ISWI chromatin remodelers responsible for nucleosome sliding; and TRA1a and TRA1b, accessory subunits of the conserved NuA4 histone acetyltransferase complex. MBD9 directly interacts with CHR11/17 and the SWR1 catalytic subunit PIE1, and is responsible for the association of CHR11/17 with the SWR1 complex. MBD9, TRA1a, and TRA1b function as canonical components of the SWR1 complex to mediate H2A.Z deposition. CHR11/17 are not only responsible for nucleosome sliding but also involved in H2A.Z deposition. These results indicate that the association of the SWR1 complex with CHR11/17 may facilitate the coupling of H2A.Z deposition with nucleosome sliding, thereby co-regulating gene expression, development, and flowering time.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Histona Acetiltransferasas/metabolismo , Nucleosomas/metabolismo , Mapas de Interacción de Proteínas , Factores de Transcripción/metabolismo
3.
New Phytol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509454

RESUMEN

Gene expression is regulated at multiple levels, including RNA processing and DNA methylation/demethylation. How these regulations are controlled remains unclear. Here, through analysis of a suppressor for the OsEIN2 over-expressor, we identified an RNA recognition motif protein SUPPRESSOR OF EIN2 (SOE). SOE is localized in nuclear speckles and interacts with several components of the spliceosome. We find SOE associates with hundreds of targets and directly binds to a DNA glycosylase gene DNG701 pre-mRNA for efficient splicing and stabilization, allowing for subsequent DNG701-mediated DNA demethylation of the transgene promoter for proper gene expression. The V81M substitution in the suppressor mutant protein mSOE impaired its protein stability and binding activity to DNG701 pre-mRNA, leading to transgene silencing. SOE mutation enhances grain size and yield. Haplotype analysis in c. 3000 rice accessions reveals that the haplotype 1 (Hap 1) promoter is associated with high 1000-grain weight, and most of the japonica accessions, but not indica ones, have the Hap 1 elite allele. Our study discovers a novel mechanism for the regulation of gene expression and provides an elite allele for the promotion of yield potentials in rice.

4.
Plant Cell ; 33(10): 3250-3271, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34270751

RESUMEN

In the INO80 chromatin remodeling complex, all of the accessory subunits are assembled on the following three domains of INO80: N-terminal domain (NTD), HSA domain, and ATPase domain. Although the ATPase and HSA domains and their interacting accessory subunits are known to be responsible for chromatin remodeling, it is largely unknown how the accessory subunits that interact with the INO80 NTD regulate chromatin status. Here, we identify both conserved and nonconserved accessory subunits that interact with the three domains in the INO80 complex in Arabidopsis thaliana. While the accessory subunits that interact with all the three INO80 domains can mediate transcriptional repression, the INO80 NTD and the accessory subunits interact with it can contribute to transcriptional activation even when the ATPase domain is absent, suggesting that INO80 has an ATPase-independent role. A subclass of the COMPASS histone H3K4 methyltransferase complexes interact with the INO80 NTD in the INO80 complex and function together with the other accessory subunits that interact with the INO80 NTD, thereby facilitating H3K4 trimethylation and transcriptional activation. This study suggests that the opposite effects of the INO80 complex on transcription are required for the balance between vegetative growth and flowering under diverse environmental conditions.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Adenosina Trifosfatasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Metilación
5.
Cell ; 137(3): 498-508, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410546

RESUMEN

DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing the siRNA triggers. KTF1 has similarity to the transcription elongation factor SPT5 and contains a C-terminal extension rich in GW/WG repeats. KTF1 colocalizes with ARGONAUTE 4 (AGO4) in punctate nuclear foci and binds AGO4 and RNA transcripts. Our results suggest KTF1 as an adaptor protein that binds scaffold transcripts generated by Pol V and recruits AGO4 and AGO4-bound siRNAs to form an RdDM effector complex. The dual interaction of an effector protein with AGO and small RNA target transcripts may be a general feature of RNA-silencing effector complexes.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Argonautas , Sitios de Unión , ADN de Plantas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
6.
Mol Cell ; 61(2): 222-35, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26711010

RESUMEN

DNA methylation directed by 24-nucleotide (nt) small interfering RNAs (siRNAs) plays critical roles in gene regulation and transposon silencing in Arabidopsis. 24-nt siRNAs are known to be processed from double-stranded RNAs by Dicer-like 3 (DCL3) and loaded into the effector Argonaute 4 (AGO4). Here we report a distinct class of siRNAs independent of DCLs (sidRNAs). sidRNAs are present as ladders of ∼ 20-60 nt in length, often having the same 5' ends but differing in 3' ends by 1-nt steps. We further show that sidRNAs are associated with AGO4 and capable of directing DNA methylation. Finally we show that sidRNA production depends on distributive 3'-5' exonucleases. Our findings suggest an alternative route for siRNA biogenesis. Precursor transcripts are bound by AGO4 and subsequently subjected to 3'-5' exonucleolytic trimming for maturation. We propose that sidRNAs generated through this route are the initial triggers of de novo DNA methylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN , ARN Interferente Pequeño/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Secuencia de Bases , Genoma de Planta , Datos de Secuencia Molecular , Mutación/genética , ARN de Planta/genética , ARN Polimerasa Dependiente del ARN/genética , Plantones/genética
7.
BMC Pregnancy Childbirth ; 24(1): 371, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750445

RESUMEN

BACKGROUND: To explore a method for screening and diagnosing neonatal congenital heart disease (CHD) applicable to grassroots level, evaluate the prevalence of CHD, and establish a hierarchical management system for CHD screening and treatment at the grassroots level. METHODS: A total of 24,253 newborns born in Tang County between January 2016 and December 2020 were consecutively enrolled and screened by trained primary physicians via the "twelve-section ultrasonic screening and diagnosis method" (referred to as the "twelve-section method"). Specialized staff from the CHD Screening and Diagnosis Center of Hebei Children's Hospital regularly visited the local area for definite diagnosis of CHD in newborns who screened positive. Newborns with CHD were managed according to the hierarchical management system. RESULTS: The centre confirmed that, except for 2 newborns with patent ductus arteriosus missed in the diagnosis of ventricular septal defect combined with severe pulmonary hypertension, newborns with other isolated or concomitant simple CHDs were identified at the grassroots level. The sensitivity, specificity and diagnostic coincidence rate of the twelve-section method for screening complex CHD were 92%, 99.6% and 84%, respectively. A total of 301 children with CHD were identified. The overall CHD prevalence was 12.4‰. According to the hierarchical management system, 113 patients with simple CHD recovered spontaneously during local follow-up, 48 patients continued local follow-up, 106 patients were referred to the centre for surgery (including 17 patients with severe CHD and 89 patients with progressive CHD), 1 patient died without surgery, and 8 patients were lost to follow-up. Eighteen patients with complex CHD were directly referred to the centre for surgery, 3 patients died without surgery, and 4 patients were lost to follow-up. Most patients who received early intervention achieved satisfactory results. The mortality rate of CHD was approximately 28.86 per 100,000 children. CONCLUSIONS: The "twelve-section method" is suitable for screening neonatal CHD at the grassroots level. The establishment of a hierarchical management system for CHD screening and treatment is conducive to the scientific management of CHD, which has important clinical and social significance for early detection, early intervention, reduction in mortality and improvement of the prognosis of complex and severe CHDs.


Asunto(s)
Cardiopatías Congénitas , Tamizaje Neonatal , Humanos , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/diagnóstico por imagen , Recién Nacido , China/epidemiología , Tamizaje Neonatal/métodos , Femenino , Masculino , Prevalencia , Sensibilidad y Especificidad
8.
Nucleic Acids Res ; 50(13): 7380-7395, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35766439

RESUMEN

Although previous studies have identified several autonomous pathway components that are required for the promotion of flowering, little is known about how these components cooperate. Here, we identified an autonomous pathway complex (AuPC) containing both known components (FLD, LD and SDG26) and previously unknown components (EFL2, EFL4 and APRF1). Loss-of-function mutations of all of these components result in increased FLC expression and delayed flowering. The delayed-flowering phenotype is independent of photoperiod and can be overcome by vernalization, confirming that the complex specifically functions in the autonomous pathway. Chromatin immunoprecipitation combined with sequencing indicated that, in the AuPC mutants, the histone modifications (H3Ac, H3K4me3 and H3K36me3) associated with transcriptional activation are increased, and the histone modification (H3K27me3) associated with transcriptional repression is reduced, suggesting that the AuPC suppresses FLC expression at least partially by regulating these histone modifications. Moreover, we found that the AuPC component SDG26 associates with FLC chromatin via a previously uncharacterized DNA-binding domain and regulates FLC expression and flowering time independently of its histone methyltransferase activity. Together, these results provide a framework for understanding the molecular mechanism by which the autonomous pathway regulates flowering time.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutación
9.
Plant Cell ; 32(7): 2178-2195, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32358072

RESUMEN

Chromatin remodeling and histone modifications are important for development and floral transition in plants. However, it is largely unknown whether and how these two epigenetic regulators coordinately regulate the important biological processes. Here, we identified three types of Imitation Switch (ISWI) chromatin-remodeling complexes in Arabidopsis (Arabidopsis thaliana). We found that AT-RICH INTERACTING DOMAIN5 (ARID5), a subunit of a plant-specific ISWI complex, can regulate development and floral transition. The ARID-PHD dual domain cassette of ARID5 recognizes both the H3K4me3 histone mark and AT-rich DNA. We determined the ternary complex structure of the ARID5 ARID-PHD cassette with an H3K4me3 peptide and an AT-containing DNA. The H3K4me3 peptide is combinatorially recognized by the PHD and ARID domains, while the DNA is specifically recognized by the ARID domain. Both PHD and ARID domains are necessary for the association of ARID5 with chromatin. The results suggest that the dual recognition of AT-rich DNA and H3K4me3 by the ARID5 ARID-PHD cassette may facilitate the association of the ISWI complex with specific chromatin regions to regulate development and floral transition.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Unión al ADN/genética , Flores/fisiología , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Cristalografía por Rayos X , ADN de Plantas/genética , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Plantas Modificadas Genéticamente , Dominios Proteicos
10.
Plant J ; 107(2): 467-479, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33942410

RESUMEN

Association of RNA polymerase V (Pol V) with chromatin is a critical step for RNA- directed DNA methylation (RdDM) in plants. Although the methylated DNA-binding proteins SUVH2 and SUVH9 and the chromatin remodeler-containing complex DRD1-DMS3-RDM1 are known to be required for the association of Pol V with chromatin, the molecular mechanisms underlying the association of Pol V with different chromatin environments remain largely unknown. Here we found that SUVH9 interacts with FVE, a homolog of the mammalian retinoblastoma-associated protein, which has been previously identified as a shared subunit of the histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci. Compared with FVE-independent RdDM target loci, FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than in pericentromeric heterochromatin regions. This study contributes to our understanding of how the association of Pol V with chromatin is regulated in different chromatin environments.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Cromatina/metabolismo , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Factores de Transcripción/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación , Interferencia de ARN , Plantones/metabolismo , Factores de Transcripción/metabolismo
11.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30104406

RESUMEN

In eukaryotes, heterochromatin regions are typically subjected to transcriptional silencing. DNA methylation has an important role in such silencing and has been studied extensively. However, little is known about how methylated heterochromatin regions are subjected to silencing. We conducted a genetic screen and identified an epcr (enhancer of polycomb-related) mutant that releases heterochromatin silencing in Arabidopsis thaliana We demonstrated that EPCR1 functions redundantly with its paralog EPCR2 and interacts with PWWP domain-containing proteins (PWWPs), AT-rich interaction domain-containing proteins (ARIDs), and telomere repeat binding proteins (TRBs), thus forming multiple functionally redundant protein complexes named PEAT (PWWPs-EPCRs-ARIDs-TRBs). The PEAT complexes mediate histone deacetylation and heterochromatin condensation and thereby facilitate heterochromatin silencing. In heterochromatin regions, the production of small interfering RNAs (siRNAs) and DNA methylation is repressed by the PEAT complexes. The study reveals how histone deacetylation, heterochromatin condensation, siRNA production, and DNA methylation interplay with each other and thereby maintain heterochromatin silencing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen/fisiología , Heterocromatina/metabolismo , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Acetilación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Heterocromatina/genética , Histonas/genética , Complejos Multiproteicos/genética
12.
New Phytol ; 233(2): 751-765, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724229

RESUMEN

FLOWERING LOCUS M (FLM) is a well-known MADS-box transcription factor that is required for preventing early flowering under low temperatures in Arabidopsis thaliana. Alternative splicing of FLM is involved in the regulation of temperature-responsive flowering. However, how the basic transcript level of FLM is regulated is largely unknown. Here, we conducted forward genetic screening and identified a previously uncharacterized flowering repressor gene, UBA2c. Genetic analyses indicated that UBA2c represses flowering at least by promoting FLM transcription. We further demonstrated that UBA2c directly binds to FLM chromatin and facilitates FLM transcription by inhibiting histone H3K27 trimethylation, a histone marker related to transcriptional repression. UBA2c encodes a protein containing two putative RNA recognition motifs (RRMs) and one prion-like domain (PrLD). We found that UBA2c forms speckles in the nucleus and that both the RRMs and PrLD are required not only for forming the nuclear speckles but also for the biological function of UBA2c. These results identify a previously unknown flowering repressor and provide insights into the regulation of flowering time.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Motivo de Reconocimiento de ARN
13.
J Integr Plant Biol ; 64(2): 499-515, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34964264

RESUMEN

Adenosine triphosphate-dependent chromatin remodeling complexes are important for the regulation of transcription, DNA replication, and genome stability in eukaryotes. Although genetic studies have illustrated various biological functions of core and accessory subunits of chromatin-remodeling complexes in plants, the identification and characterization of chromatin-remodeling complexes in plants is lagging behind that in yeast and animals. Recent studies determined whether and how the Arabidopsis SWI/SNF, ISWI, INO80, SWR1, and CHD chromatin remodelers function in multi-subunit complexes in Arabidopsis. Both conserved and plant-specific subunits of chromatin-remodeling complexes have been identified and characterized. These findings provide a basis for further studies of the molecular mechanisms by which the chromatin-remodeling complexes function in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina , Ensamble y Desensamble de Cromatina , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Integr Plant Biol ; 64(12): 2438-2454, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36354145

RESUMEN

Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3K4 methylation in Arabidopsis thaliana, it is unknown whether and how these histone methyltransferases affect DNA methylation. Here, we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation. The expression and H3K4me3 levels of both RNA-directed DNA methylation (RdDM) genes (NRPE1, DCL3, IDN2, and IDP2) and active DNA demethylation genes (ROS1, DML2, and DML3) were downregulated in the atx1/2/4/5 mutant. Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites, and that the RdDM pathway mediates DNA methylation mainly at CHH sites, whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3 (rdd), and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1, suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3K4me3 levels and expression levels of both RdDM genes and active DNA demethylation genes. Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes, we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation. This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ADN Glicosilasas , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo
15.
J Integr Plant Biol ; 64(4): 901-914, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35043580

RESUMEN

Although two Enhancer of Polycomb-like proteins, EPL1A and EPL1B (EPL1A/B), are known to be conserved and characteristic subunits of the NuA4-type histone acetyltransferase complex in Arabidopsis thaliana, the biological function of EPL1A/B and the mechanism by which EPL1A/B function in the complex remain unknown. Here, we report that EPL1A/B are required for the histone acetyltransferase activity of the NuA4 complex on the nucleosomal histone H4 in vitro and for the enrichment of histone H4K5 acetylation at thousands of protein-coding genes in vivo. Our results suggest that EPL1A/B are required for linking the NuA4 catalytic subunits HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1(HAM1) and HAM2 with accessory subunits in the NuA4 complex. EPL1A/B function redundantly in regulating plant development especially in chlorophyll biosynthesis and de-etiolation. The EPL1A/B-dependent transcription and H4K5Ac are enriched at genes involved in chlorophyll biosynthesis and photosynthesis. We also find that EAF6, another characteristic subunit of the NuA4 complex, contributes to de-etiolation. These results suggest that the Arabidopsis NuA4 complex components function as a whole to mediate histone acetylation and transcriptional activation specifically at light-responsive genes and are critical for photomorphogenesis.


Asunto(s)
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Fotosíntesis/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Plant J ; 103(4): 1503-1515, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32412137

RESUMEN

Small interfering RNAs (siRNAs) are responsible for establishing and maintaining DNA methylation through the RNA-directed DNA methylation (RdDM) pathway in plants. Although siRNA biogenesis is well known, it is relatively unclear about how the process is regulated. By a forward genetic screen in Arabidopsis thaliana, we identified a mutant defective in NOT1 and demonstrated that NOT1 is required for transcriptional silencing at RdDM target genomic loci. We demonstrated that NOT1 is required for Pol IV-dependent siRNA accumulation and DNA methylation at a subset of RdDM target genomic loci. Furthermore, we revealed that NOT1 is a constituent of a multi-subunit CCR4-NOT deadenylase complex by immunoprecipitation combined with mass spectrometry and demonstrated that the CCR4-NOT components can function as a whole to mediate chromatin silencing. Therefore, our work establishes that the CCR4-NOT complex regulates the biogenesis of Pol IV-dependent siRNAs, and hence facilitates DNA methylation and transcriptional silencing in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , ARN Polimerasas Dirigidas por ADN/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología
17.
J Integr Plant Biol ; 63(4): 755-771, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33325122

RESUMEN

In eukaryotes, MEDIATOR is a conserved multi-subunit complex that links transcription factors and RNA polymerase II and that thereby facilitates transcriptional initiation. Although the composition of MEDIATOR has been well studied in yeast and mammals, relatively little is known about the composition of MEDIATOR in plants. By affinity purification followed by mass spectrometry, we identified 28 conserved MEDIATOR subunits in Arabidopsis thaliana, including putative MEDIATOR subunits that were not previously validated. Our results indicated that MED34, MED35, MED36, and MED37 are not Arabidopsis MEDIATOR subunits, as previously proposed. Our results also revealed that two homologous CBP/p300 histone acetyltransferases, HAC1 and HAC5 (HAC1/5) are in fact plant-specific MEDIATOR subunits. The MEDIATOR subunits MED8 and MED25 (MED8/25) are partially responsible for the association of MEDIATOR with HAC1/5, MED8/25 and HAC1/5 co-regulate gene expression and thereby affect flowering time and floral development. Our in vitro observations indicated that MED8 and HAC1 form liquid-like droplets by phase separation, and our in vivo observations indicated that these droplets co-localize in the nuclear bodies at a subset of nuclei. The formation of liquid-like droplets is required for MED8 to interact with RNA polymerase II. In summary, we have identified all of the components of Arabidopsis MEDIATOR and revealed the mechanism underlying the link of histone acetylation and transcriptional regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Histonas/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Plantas Modificadas Genéticamente/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
18.
J Integr Plant Biol ; 63(4): 787-802, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33433058

RESUMEN

Trimethylated histone H3 lysine 27 (H3K27me3) is a repressive histone marker that regulates a variety of developmental processes, including those that determine flowering time. However, relatively little is known about the mechanism of how H3K27me3 is recognized to regulate transcription. Here, we identified BAH domain-containing transcriptional regulator 1 (BDT1) as an H3K27me3 reader. BDT1 is responsible for preventing flowering by suppressing the expression of flowering genes. Mutation of the H3K27me3 recognition sites in the BAH domain disrupted the binding of BDT1 to H3K27me3, leading to de-repression of H3K27me3-enriched flowering genes and an early-flowering phenotype. We also found that BDT1 interacts with a family of PHD finger-containing proteins, which we named PHD1-6, and with CPL2, a Pol II carboxyl terminal domain (CTD) phosphatase responsible for transcriptional repression. Pull-down assays showed that the PHD finger-containing proteins can enhance the binding of BDT1 to the H3K27me3 peptide. Mutations in all of the PHD genes caused increased expression of flowering genes and an early-flowering phenotype. This study suggests that the binding of BDT1 to the H3K27me3 peptide, which is enhanced by PHD proteins, is critical for preventing early flowering.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética
19.
Plant J ; 98(3): 448-464, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30828924

RESUMEN

Chromatin modifications are known to affect flowering time in plants, but little is known about how these modifications regulate flowering time in response to environmental signals like photoperiod. In Arabidopsis thaliana, HDC1, a conserved subunit of the RPD3-like histone deacetylase (HDAC) complex, was previously reported to regulate flowering time via the same mechanism as does the HDAC HDA6. Here, we demonstrate that HDC1, SNLs and MSI1 are shared subunits of the HDA6 and HDA19 HDAC complexes. While the late-flowering phenotype of the hda6 mutant is independent of photoperiod, the hda19, hdc1 and snl2/3/4 mutants flower later than or at a similar time to the wild-type in long-day conditions but flower earlier than the wild-type in short-day conditions. Our genome-wide analyses indicate that the effect of hdc1 on histone acetylation and transcription is comparable with that of hda19 but is different from that of hda6. Especially, we demonstrate that the HDA19 complex directly regulates the expression of two flowering repressor genes related to the gibberellin signaling pathway. Thus, the study reveals a photoperiod-dependent role of the HDA19 HDAC complex in the regulation of flowering time.


Asunto(s)
Arabidopsis/genética , Flores/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Histona Desacetilasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Histona Desacetilasas/genética , Fotoperiodo
20.
J Integr Plant Biol ; 62(11): 1703-1716, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32396248

RESUMEN

Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi-subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead-associated domain 2 (FHA2) as a plant-specific subunit of an ISWI chromatin-remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early-flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA-seq analysis indicated that the fha2 mutant affects a subset of RLT1/2-regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Proteínas Nucleares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Nucleares/genética , Nucleosomas/metabolismo , Infertilidad Vegetal/genética , Infertilidad Vegetal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA