Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2403660, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004850

RESUMEN

All-solid-state lithium metal batteries (ASSLMBs) have emerged as the most promising next-generation energy storage devices. However, the unsatisfactory ionic conductivity of solid electrolytes at room temperature has impeded the advancement of solid-state batteries. In this work, a multifunctional composite solid electrolyte (CSE) is developed by incorporating boron nitride nanotubes (BNNTs) into polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP). BNNTs, with a high aspect ratio, trigger the dissociation of Li salts, thus generating a greater population of mobile Li+, and establishing long-distance Li+ transport pathways. PVDF-HFP/BNNT exhibits a high ionic conductivity of 8.0 × 10-4 S cm-1 at room temperature and a Li+ transference number of 0.60. Moreover, a Li//Li symmetric cell based on PVDF-HFP/BNNT demonstrates robust cyclic performance for 3400 h at a current density of 0.2 mA cm-2. The ASSLMB formed from the assembly of PVDF-HFP/BNNT with LiFePO4 and Li exhibits a capacity retention of 93.2% after 850 cycles at 0.5C and 25 °C. The high-voltage all-solid-state LiCoO2/Li cell based on PVDF-HFP/BNNT also exhibits excellent cyclic performance, maintaining a capacity retention of 96.4% after 400 cycles at 1C and 25 °C. Furthermore, the introduction of BNNTs is shown to enhance the thermal conductivity and flame retardancy of the CSE.

2.
J Phys Chem Lett ; 15(7): 1921-1929, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38345930

RESUMEN

Chemical vapor deposition (CVD) stands out as the most promising method for cost-effective production of high-quality boron nitride nanotubes (BNNTs). Catalysts play a crucial role in BNNT synthesis. This work delves into the impact of oxygen (O) on Ti-based catalysts during the CVD growth of BNNTs. In contrast to the B/TiB2 nanoparticles (NPs) and B/TiN NPs systems, the oxygen-containing precursor B/TiO2 NPs remarkably catalyzes the growth of high-quality and high-purity BNNTs across a wider range of synthesis parameters. Subsequent analyses reveal that TiBO3 acts as an active catalyst, facilitating BNNT growth in Ti-based catalyst systems. Moreover, the nanocomposite film synthesized from BNNTs and PVDF-HFP exhibits excellent mechanical properties and heat dissipation capabilities. Utilizing the nanocomposite film as a thermal interface material effectively enhances the heat dissipation for a 5 W light-emitting diode (LED) chip. Consequently, our research confirms the effectiveness of the Ti-B-O system in catalyzing BNNT growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA