RESUMEN
Brassinosteroids (BRs) are a group of steroid hormones that play crucial roles in plant growth and development. Atypical bHLH transcription factors that lack the basic region for DNA binding have been implicated in BR signaling. However, the underlying mechanisms of atypical bHLHs in regulation of rice (Oryza sativa) BR signaling are still largely unknown. Here, we describe a systematic characterization of INCREASED LEAF INCLINATION (ILI) subfamily atypical bHLH transcription factors in rice. A total of 8 members, ILI1 to ILI8, with substantial sequence similarity were retrieved. Knockout and overexpression analyses demonstrated that these ILIs play unequally redundant and indispensable roles in BR-mediated growth and development in rice, with a more prominent role for ILI4 and ILI5. The ili3/4/5/8 quadruple and ili1/3/4/7/8 quintuple mutants displayed tremendous BR-related defects with severe dwarfism, erect leaves, and sterility. Biochemical analysis showed that ILIs interact with OsbHLH157 and OsbHLH158, which are also atypical bHLHs and have no obvious transcriptional activity. Overexpression of OsbHLH157 and OsbHLH158 led to drastic BR-defective growth, whereas the osbhlh157 osbhlh158 double mutant developed a typical BR-enhanced phenotype, indicating that OsbHLH157 and OsbHLH158 play a major negative role in rice BR signaling. Further transcriptome analyses revealed opposite effects of ILIs and OsbHLH157/OsbHLH158 in regulation of downstream gene expression, supporting the antagonism of ILIs and OsbHLH157/OsbHLH158 in maintaining the balance of BR signaling. Our results provide insights into the mechanism of BR signaling and plant architecture formation in rice.
Asunto(s)
Oryza , Oryza/genética , Brasinoesteroides , Transducción de Señal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión GénicaRESUMEN
The external application of nitrogen (N) fertilizers is an important practice for increasing crop production. However, the excessive use of fertilizers significantly increases production costs and causes environmental problems, making the improvement of crop N-use efficiency (NUE) crucial for sustainable agriculture in the future. Here we show that the rice (Oryza sativa) NUE quantitative trait locus DULL NITROGEN RESPONSE1 (qDNR1), which is involved in auxin homeostasis, reflects the differences in nitrate (NO3-) uptake, N assimilation, and yield enhancement between indica and japonica rice varieties. Rice plants carrying the DNR1indica allele exhibit reduced N-responsive transcription and protein abundance of DNR1. This, in turn, promotes auxin biosynthesis, thereby inducing AUXIN RESPONSE FACTOR-mediated activation of NO3- transporter and N-metabolism genes, resulting in improved NUE and grain yield. We also show that a loss-of-function mutation at the DNR1 locus is associated with increased N uptake and assimilation, resulting in improved rice yield under moderate levels of N fertilizer input. Therefore, modulating the DNR1-mediated auxin response represents a promising strategy for achieving environmentally sustainable improvements in rice yield.
Asunto(s)
Ácidos Indolacéticos/metabolismo , Mutación con Pérdida de Función/genética , Nitrógeno/metabolismo , Oryza/genética , Oryza/metabolismo , Alelos , Homeostasis/genética , Homeostasis/fisiologíaRESUMEN
Transgene residuals in edited plants affect genetic analysis, pose off-target risks, and cause regulatory concerns. Several strategies have been developed to efficiently edit target genes without leaving any transgenes in plants. Some approaches directly address this issue by editing plant genomes with DNA-free reagents. On the other hand, DNA-based techniques require another step for ensuring plants are transgene-free. Fluorescent markers, pigments, and chemical treatments have all been employed as tools to distinguish transgenic plants from transgene-free plants quickly and easily. Moreover, suicide genes have been used to trigger self-elimination of transgenic plants, greatly improving the efficiency of isolating the desired transgene-free plants. Transgenes can also be excised from plant genomes using site-specific recombination, transposition or gene editing nucleases, providing a strategy for editing asexually produced plants. Finally, haploid induction coupled with gene editing may make it feasible to edit plants that are recalcitrant to transformation. Here, we evaluate the strengths and weaknesses of recently developed approaches for obtaining edited plants without transgene residuals.
Asunto(s)
Edición Génica , Genoma de Planta , Plantas Modificadas Genéticamente , Endonucleasas/genética , Edición Génica/métodos , Genoma de Planta/genética , Plantas Modificadas Genéticamente/genética , TransgenesRESUMEN
Beneficial alleles derived from local landraces or related species, or even orthologs from other plant species, are often caused by differences of one or several single-nucleotide polymorphisms or indels in either the promoter region or the encoding region of a gene and often account for major differences in agriculturally important traits. Clustered regularly interspaced short palindromic repeats-associated endonuclease Cas9 system (CRISPR/Cas9)-mediated precision genome editing enables targeted allele replacement or insertion of flag or foreign genes at specific loci via homology-directed repair (HDR); however, HDR efficiency is low due to the intrinsic rare occurrence of HDR and insufficient DNA repair template in the proximity of a double-stranded break (DSB). Precise replacement of the targeted gene with elite alleles from landraces or relatives into a commercial variety through genome editing has been a holy grail in the crop genome editing field. In this update, we briefly summarize CRISPR/Cas-mediated HDR in plants. We describe diverse strategies to improve HDR efficiency by manipulating the DNA repair pathway, timing DSB induction, and donor delivery, and so on. Lastly, we outline open questions and challenges in HDR-mediated precision genome editing in both plant biological research and crop improvement.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN/genética , Reparación del ADN por Recombinación/genéticaRESUMEN
Precise replacement of an allele with an elite allele controlling an important agronomic trait in a predefined manner by gene editing technologies is highly desirable in crop improvement. Base editing and prime editing are two newly developed precision gene editing systems which can introduce the substitution of a single base and install the desired short indels to the target loci in the absence of double-strand breaks and donor repair templates, respectively. Since their discoveries, various strategies have been attempted to optimize both base editor (BE) and prime editor (PE) in order to improve the precise editing efficacy, specificity, and expand the targeting scopes. Here, we summarize the latest development of various BEs and PEs, as well as their applications in plants. Based on these progresses, we recommend the appropriate BEs and PEs for both basic plant research and crop improvement. Moreover, we propose the perspectives for further optimization of these two editors. We envision that both BEs and PEs will become the routine and customized precise gene editing tools for both plant biological research and crop improvement in the near future.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Plantas/genética , AlelosRESUMEN
Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here, through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore, we targeted a rice endogenous OsEPSPS gene for artificial evolution through STCBE-2-mediated near-saturated mutagenesis. After hygromycin and glyphosate selection, we identified a novel OsEPSPS allele with an Asp-213-Asn (D213N) mutation (OsEPSPS-D213N) in the predicted glyphosate-binding domain, which conferred rice plants reliable glyphosate tolerance and had not been reported or applied in rice breeding. Collectively, we developed a novel dual base editor which will be valuable for artificial evolution of important genes in crops. And the novel glyphosate-tolerant rice germplasm generated in this study will benefit weeds management in rice paddy fields.
Asunto(s)
Oryza , Oryza/genética , Alelos , Adenina , Citosina , Fitomejoramiento , Edición Génica , GlifosatoRESUMEN
The stigma is the entry point for sexual reproduction in plants, but the mechanisms underlying stigma development are largely unknown. Here, we disrupted putative auxin biosynthetic and signaling genes to evaluate their roles in rice (Oryza sativa) development. Disruption of the rice PINOID (OsPID) gene completely eliminated the development of stigmas, and overexpression of OsPID led to overproliferation of stigmas, suggesting that OsPID is a key determinant for stigma development. Interestingly, ospid mutants did not display defects in flower initiation, nor did they develop any pin-like inflorescences, a characteristic phenotype observed in pid mutants in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). We constructed double mutants of OsPID and its closest homolog, OsPIDb, yet the double mutants still did not develop any pin-like inflorescences, indicating that either ospid is compensated by additional homologous genes or OsPID has different functions in rice compared with PID in other organisms. We then knocked out one of the NAKED PINS IN YUC MUTANTS (NPY) genes, which cause the formation of pin-like inflorescences in Arabidopsis when compromised, in the ospid background. The ospid osnpy2 double mutants developed pin-like inflorescences, which were phenotypically similar to pid mutants in Arabidopsis and maize, demonstrating that the roles of OsPID in inflorescence development are likely masked by redundant partners. This work identified a key determinant for stigma development in rice and revealed a complex picture of the PID gene in rice development. Furthermore, the stigma-less ospid mutants are potentially useful in producing hybrid rice.
Asunto(s)
Flores/crecimiento & desarrollo , Organogénesis , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Alelos , Secuencia de Bases , Membrana Celular/metabolismo , Epistasis Genética , Proteínas Fluorescentes Verdes/metabolismo , Inflorescencia/metabolismo , Mutación/genéticaRESUMEN
Engineering of a new type of plant base editor for simultaneous adenine transition and transversion within the editing window will greatly expand the scope and potential of base editing in directed evolution and crop improvement. Here, we isolated a rice endogenous hypoxanthine excision protein, N-methylpurine DNA glycosylase (OsMPG), and engineered two plant A-to-K (K = G or T) base editors, rAKBE01 and rAKBE02, for simultaneous adenine transition and transversion base editing in rice by fusing OsMPG or its mutant mOsMPG to a plant adenine transition base editor, ABE8e. We further coupled either OsMPG or mOsMPG with a transactivation factor VP64 to generate rAKBE03 and rAKBE04, respectively. Testing these four rAKBEs, at five endogenous loci in rice protoplasts, indicated that rAKBE03 and rAKBE04 enabled higher levels of A-to-G base transitions when compared to ABE8e and ABE8e-VP64. Furthermore, whereas rAKBE01 only enabled A-to-C/T editing at one endogenous locus, in comparison with rAKBE02 and rAKBE03, rAKBE04 could significantly improve the A-to-C/T base transversion efficiencies by up to 6.57- and 1.75-fold in the rice protoplasts, respectively. Moreover, although no stable lines with A-to-C transversion were induced by rAKBE01 and rAKBE04, rAKBE04 could enable simultaneous A-to-G and A-to-T transition and transversion base editing, at all the five target loci, with the efficiencies of A-to-G transition and A-to-T transversion editing ranging from 70.97 to 92.31% and 1.67 to 4.84% in rice stable lines, respectively. Together, these rAKBEs enable different portfolios of editing products and, thus, now expands the potential of base editing in diverse application scenario for crop improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00138-8.
RESUMEN
Tryptophol (IET) is a metabolite derived from L-tryptophan that can be isolated from plants, bacteria, and fungi and has a wide range of biological activities in living systems. Despite the fact that IET biosynthesis pathways exist naturally in living organisms, industrial-scale production of IET and its derivatives is solely based on environmentally unfriendly chemical conversion. With diminishing petroleum reserves and a significant increase in global demand in all major commercial segments, it becomes essential to develop new technologies to produce chemicals from renewable resources and under mild conditions, such as microbial fermentation. Here we characterized and engineered the less-studied L-tryptophan pathway and IET biosynthesis in the baker's yeast Saccharomyces cerevisiae, with the goal of investigating microbial fermentation as an alternative/green strategy to produce IET. In detail, we divided the aromatic amino acids (AAAs) metabolism related to IET synthesis into the shikimate pathway, the L-tryptophan pathway, the competing L-tyrosine/L-phenylalanine pathways, and the Ehrlich pathway based on a modular engineering concept. Through stepwise engineering of these modules, we obtained a yeast mutant capable of producing IET up to 1.04 g/L through fed-batch fermentation, a ~ 650-fold improvement over the wild-type strain. Besides, our engineering process also revealed many insights about the regulation of AAAs metabolism in S. cerevisiae. Finally, during our engineering process, we also discovered yeast mutants that accumulate anthranilate and L-tryptophan, both of which are precursors of various valuable secondary metabolites from fungi and plants. These strains could be developed to the chassis for natural product biosynthesis upon introducing heterologous pathways.
RESUMEN
CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), member of the CYP90A family of cytochrome P450 (CYP450) monooxygenase, is an essential component of brassinosteroids (BRs) biosynthesis pathway. Compared with a single CPD/CYP90A1 in Arabidopsis thaliana, two highly homologous CPD genes, OsCPD1/CYP90A3 and OsCPD2/CYP90A4, are present in rice genome. There is still no genetic evidence so far about the requirement of OsCPD1 and OsCPD2 in rice BR biosynthesis. In this study, we reported the functional characterization of OsCPD genes using CRISPR/Cas9 gene editing technology. The overall growth and development of oscpd1 and oscpd2 single knock-out mutants was indistinguishable from the wild-type, whereas, the oscpd1 oscpd2 double mutant displayed multiple and obvious BR-related defects. Cytological analyses further indicated the defective cell elongation in oscpd1 oscpd2 double mutant. The oscpd double mutants had a lower endogenous BR level and could be restored by the application of the brassinolide (BL). Moreover, overexpression of OsCPD1 and OsCPD2 led to a typical BR enhanced phenotype, with enlarged leaf angle and increased grain size. Taken together, our results provide direct genetic evidence that OsCPD1 and OsCPD2 play essential and redundant roles in maintenance of plant architecture by modulating BR biosynthesis in rice.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Oryza/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , FenotipoRESUMEN
Drought and salt stresses are major limiting factors for crop production. To identify critical genes for stress resistance in rice (Oryza sativa L.), we screened T-DNA mutants and identified a drought- and salt-hypersensitive mutant dsm3. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative inositol 1,3,4-trisphosphate 5/6-kinase previously named OsITPK2 with unknown function. Under drought stress conditions, the mutant had significantly less accumulation of osmolytes such as proline and soluble sugar and showed significantly reduced root volume, spikelet fertility, biomass, and grain yield; however, malondialdehyde level was increased in the mutant. Interestingly, overexpression of DSM3 (OsITPK2) in rice resulted in drought- and salt-hypersensitive phenotypes and physiological changes similar to those in the mutant. Inositol trisphosphate (IP3) level was decreased in the overexpressors under normal condition and drought stress. A few genes related to osmotic adjustment and reactive oxygen species scavenging were down-regulated in the mutant and overexpression lines. The expression level of DSM3 promoter-driven ß-glucuronidase (GUS) reporter gene in rice was induced by drought, salt and abscisic acid. Protoplast transient expression assay indicated that DSM3 is an endoplasmic reticulum protein. Sequence analysis revealed six putative ITPKs in rice. Transcript level analysis of OsITPK genes revealed that they had different tempo-spatial expression patterns, and the responses of DSM3 to abiotic stresses, including drought, salinity, cold, and high temperature, were distinct from the other five members in rice. These results together suggest that DSM3/OsITPK2 is an important member of the OsITPK family for stress responses, and an optimal expression level is essential for drought and salt tolerance in rice.
Asunto(s)
Sequías , Oryza/efectos de los fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Fosfatos de Inositol/metabolismo , Oryza/genética , Proteínas de Plantas/genéticaRESUMEN
CRISPR/Cas9 gene-editing technologies have been very effective in editing target genes in all major crop plants and offer unprecedented potentials in crop improvement. A major challenge in using CRISPR gene-editing technology for agricultural applications is that the target gene-edited crop plants need to be transgene free to maintain trait stability and to gain regulatory approval for commercial production. In this article, we present various strategies for generating transgene-free and target gene-edited crop plants. The CRISPR transgenes can be removed by genetic segregation if the crop plants are reproduced sexually. Marker-assisted tracking and eliminating transgenes greatly decrease the time and labor needed for identifying the ideal transgene-free plants. Transgenes can be programed to undergo self-elimination when CRISPR genes and suicide genes are sequentially activated, greatly accelerating the isolation of transgene-free and target gene-edited plants. Transgene-free plants can also be generated using approaches that are considered non-transgenic such as ribonucleoprotein transfection, transient expression of transgenes without DNA integration, and nano-biotechnology. Here, we discuss the advantages and disadvantages of the various strategies in generating transgene-free plants and provide guidance for adopting the best strategies in editing a crop plant.
RESUMEN
Reporters have been widely used to visualize gene expression, protein localization, and other cellular activities, but the commonly used reporters require special equipment, expensive chemicals, or invasive treatments. Here, we construct a new reporter RUBY that converts tyrosine to vividly red betalain, which is clearly visible to naked eyes without the need of using special equipment or chemical treatments. We show that RUBY can be used to noninvasively monitor gene expression in plants. Furthermore, we show that RUBY is an effective selection marker for transformation events in both rice and Arabidopsis. The new reporter will be especially useful for monitoring cellular activities in large crop plants such as a fruit tree under field conditions and for observing transformation and gene expression in tissue culture under sterile conditions.
RESUMEN
CRISPR/Cas9 gene editing technology has been very effective in editing genes in many plant species including rice. Here we further improve the current CRISPR/Cas9 gene editing technology in both efficiency and time needed for isolation of transgene-free and target gene-edited plants. We coupled the CRISPR/Cas9 cassette with a unit that activates anthocyanin biosynthesis, providing a visible marker for detecting the presence of transgenes. The anthocyanin-marker assisted CRISPR (AAC) technology enables us to identify transgenic events even at calli stage, to select transformants with elevated Cas9 expression, and to identify transgene-free plants in the field. We used the AAC technology to edit LAZY1 and G1 and successfully generated many transgene-free and target gene-edited plants at T1 generation. The AAC technology greatly reduced the labor, time, and costs needed for editing target genes in rice.
RESUMEN
One of the main obstacles to gene replacement in plants is efficient delivery of a donor repair template (DRT) into the nucleus for homology-directed DNA repair (HDR) of double-stranded DNA breaks. Production of RNA templates in vivo for transcript-templated HDR (TT-HDR) could overcome this problem, but primary transcripts are often processed and transported to the cytosol, rendering them unavailable for HDR. We show that coupling CRISPR-Cpf1 (CRISPR from Prevotella and Francisella 1) to a CRISPR RNA (crRNA) array flanked with ribozymes, along with a DRT flanked with either ribozymes or crRNA targets, produces primary transcripts that self-process to release the crRNAs and DRT inside the nucleus. We replaced the rice acetolactate synthase gene (ALS) with a mutated version using a DNA-free ribonucleoprotein complex that contains the recombinant Cpf1, crRNAs, and DRT transcripts. We also produced stable lines with two desired mutations in the ALS gene using TT-HDR.
Asunto(s)
Marcación de Gen/métodos , Genes de Plantas , Recombinación Homóloga , Oryza/genética , Acetolactato Sintasa/genética , Secuencia de Bases , Biotecnología , Sistemas CRISPR-Cas , ADN de Plantas/genética , Mutación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN de Planta/genética , Proteínas Recombinantes/genética , Reparación del ADN por Recombinación , Moldes GenéticosRESUMEN
CRISPR/Cas9-mediated genome editing technology has been used to successfully edit numerous genes in various organisms including plants. There are still two major challenges in using CRISPR/Cas9 technology for gene editing in plants. First, there are very limited choices of promoters that are suitable for in vivo production of single-guide RNAs (sgRNAs), which is complementary to the target sequence and which guides Cas9 to generate double-strand breaks at the target site. It is especially difficult to produce sgRNA molecules with temporal and spatial precision. Second, there is a lack of efficient methods for identifying plants that (1) contain heritable and stable mutations generated by CRISPR/Cas9, and (2) no longer harbor the CRISPR/Cas9 construct and other transgenes. In this chapter, we describe the development of a ribozyme-based strategy that enables the production of sgRNA molecules from any chosen promoter. More importantly, the ribozyme-based technology makes it feasible to produce sgRNAs with temporal and spatial precision, greatly expanding the scope and applications of CRISPR/Cas9 technology. We also developed a fluorescence-based technology that allows us to efficiently and reliably isolate Cas9-free stable Arabidopsis mutants. Thus, we provide effective protocols to overcome two important obstacles in using CRISPR/Cas9 for editing genes in plants.