Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(17): e2206936, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36719986

RESUMEN

Calcium overload and ROS overproduction, two major triggers of acute kidney injury (AKI), are self-amplifying and mutually reinforcing, forming a complicated cascading feedback loop that induces kidney cell "suicide" and ultimately renal failure. There are currently no clinically effective drugs for the treatment of AKI, excluding adjuvant therapy. In this study, a porous silicon-based nanocarrier rich in disulfide bond skeleton (<50 nm) is developed that enables efficient co-loading of the hydrophilic drug borane amino complex and the hydrophobic drug BAPTA-AM, with its outer layer sealed by the renal tubule-targeting peptide PEG-LTH. Once targeted to the kidney injured site, the nanocarrier structure collapses in the high glutathione environment of the early stage of AKI, releasing the drugs. Under the action of the slightly acidic inflammatory environment and intracellular esterase, the released drugs produce hydrogen and BAPTA, which can rapidly eliminate the excess ROS and overloaded Ca2+ , blocking endoplasmic reticulum/mitochondrial apoptosis pathway (ATF4-CHOP-Bax axis, Casp-12-Casp-3 axis, Cyt-C-Casp-3 axis) and inflammatory pathway (TNF-α-NF-κB axis) from the source, thus rescuing the renal cells in the "critical survival" state and further restoring the kidney function. Overall, this nanoparticle shows substantial clinical promise as a potential therapeutic strategy for I/R injury-related diseases.


Asunto(s)
Lesión Renal Aguda , Calcio , Humanos , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Retroalimentación , Apoptosis , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Riñón/metabolismo
2.
Analyst ; 148(6): 1291-1299, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36846974

RESUMEN

The currently established DNA nanoprobes for the detection of mycotoxin from beverages have been limited by complicated sample pretreatment and uncontrollable nanoparticle flocculation in complex systems. We develop a rapid colorimetric approach for ochratoxin A (OTA) detection in Baijiu in a sample-in/"yes" or "no" answer-out fashion through target-modulated base pair stacking assembly of DNA-functionalized gold nanoparticles (DNA-AuNPs). The colorimetric signification of OTA relies on the competition of OTA with the AuNP surface-grafted DNA in binding with an OTA-targeted aptamer. The specific recognition of OTA by the aptamer prevents DNA duplex formation on the AuNP surface, thereby inhibiting the base pair stacking assembly of the DNA-AuNPs and giving rise to a "turn-on" color. By further suppressing DNA hybridization using a bulged loop design and an alcohol solution, the DNA-AuNPs exhibit an improved reproducibility for OTA sensing while maintaining excellent susceptivity to OTA. A detection limit of 88 nM was achieved along with high specificity towards OTA, which is lower than the maximum tolerated level of OTA in foodstuffs defined by countries worldwide. The entire reaction time, avoiding sample pretreatment, is less than 17 min. The DNA-AuNPs with anti-interference features and sensitive "turn-on" performance promise convenient on-site detection of mycotoxin from daily beverages.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Micotoxinas , Ocratoxinas , Oro , Emparejamiento Base , Reproducibilidad de los Resultados , Ocratoxinas/análisis , ADN/genética , Límite de Detección
3.
Inorg Chem ; 62(30): 12067-12078, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37475677

RESUMEN

LixAg1-xGaSe2 is a new series of solid solution crystals that has a large nonlinear optical (NLO) coefficient and laser-induced damage threshold (LIDT). It has great application prospects in mid-infrared laser frequency conversion. In this work, LixAg1-xGaSe2 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1) crystals (Φ 16 mm × 40 mm) were grown by the improved Bridgeman method in a four-zone furnace. It is found that the LixAg1-xGaSe2 (x = 0.2-0.8) crystals keep the same tetragonal symmetry with AgGaSe2 and the melting and solidification temperature increase with the Li content. Because the as-grown crystals are almost opaque in the visible-NIR range, an annealing experiment is necessary. After annealing, the transmittance is improved significantly, which can meet the application requirements. The band gap is changed by annealing atmosphere; for instance, the band gap of Li0.6Ag0.4GaSe2 annealed in a LiGaSe2 powder atmosphere increases from 2.35 to 2.56 eV, while the band gap of LiGaSe2 annealed in vacuum decreases from 3.39 to 3.01 eV. Finally, the LixAg1-xGaSe2 shows an extreme SHG response, especially Li0.8Ag0.2GaSe2, which has about five times that of LiGaSe2, proving the promising NLO properties.

4.
Inorg Chem ; 62(20): 7921-7931, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37150960

RESUMEN

LiGa0.5In0.5Se2 is a new quaternary nonlinear optical crystal for the mid-IR application grown as a mixed crystal of the LiGaSe2-LiInSe2 solid-solution system. It is transparent in the 0.47-14 µm range and has an appropriate bandgap and a lower melting point than LiGaSe2 and LiInSe2. It is more technological about the growth process since its homogeneity range is broader in the phase diagram. In this work, we have synthesized the LiGa0.5In0.5Se2 polycrystal by the two-zone temperature method. LiGa0.5In0.5Se2 single crystals (Φ26 mm × 50 mm) were grown through the modified Bridgman method with the c-axis seed crystal which has the smallest thermal expansion coefficient of the three main axes in 293-773 K. The crystal structure was studied by X-ray diffraction and the Rietveld refinement method. Due to the low transmittance of the as-grown crystals, a systematic thermal treatment experiment was carried out. In the annealing experiment, the crystal surface is seriously enriched with selenium due to the thermal diffusion of selenium, resulting in the crystal opacity and cracking, while after vacuum quenching at 873 K, the transmittance of the LiGa0.5In0.5Se2 crystal wafer was greatly improved, the bandgap shows a large increase from 2.13 to 2.51 eV, and the quenched crystal shows strong SHG response (×1.91 LiGaSe2). The chemical states and vibration modes of surface elements for both conditions were characterized by X-ray photoelectron and Raman spectra. Density functional theory calculations were carried out to simulate the phonon spectrum and phonon density of states, which can help to study the phonon vibration modes in the lattice.

5.
J Nanobiotechnology ; 21(1): 408, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37926815

RESUMEN

Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.


Asunto(s)
Materiales Biocompatibles , Polisacáridos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Polisacáridos/química , Ingeniería de Tejidos , Sistemas de Liberación de Medicamentos
6.
Inorg Chem ; 61(25): 9776-9784, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35696486

RESUMEN

Mid-infrared laser in the 2-5 µm wavelength region is in the atmospheric transmission window range, and hence, it has important application prospects in the fields of optoelectronic countermeasures, space communication, environmental remote sensing, and molecular spectroscopy. One of the most promising technological approaches to achieve mid-infrared laser output is based on direct lasing of transition-metal (TM)-doped II-VI chalcogenide crystals. In this work, CdSxSe1-x and Cr:CdS0.8Se0.2 polycrystals were synthesized by a chemical vapor synthesis method from a stoichiometric mixture of vacuum-sublimed CdS and CdSe. The structure of the synthesized products was analyzed by X-ray diffraction (XRD). Using these synthesized products, CdSxSe1-x and Cr:CdS0.8Se0.2 single crystals were grown by the physical vapor transport (PVT) method. After annealing, the band gap becomes smaller and the transmission range widens to 17 µm. The composition of the single crystals was determined by energy-dispersive spectrometry (EDS) mapping and XPS, and it was found to be uniform throughout the ingot. In addition, the absorption peak maximum for the Cr2+ ion in the Cr:CdS0.8Se0.2 crystal is at 1.84 µm.

7.
Inorg Chem ; 61(17): 6562-6573, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35426664

RESUMEN

The new quaternary single crystals AgGaGenSe2(n+1) (n = 1.5, 1.75, 2, 3, 4, 5, and 9) have high nonlinear optical property and can be used for mid-IR laser applications in high power. However, only AgGaGe3Se8 and AgGaGe5Se12 have been grown on a large scale and studied in detail. In this work, the AgGaGenSe2(n+1) (n = 1.5, 1.75, 2, 3, 4, 5, and 9) crystals (Φ 20 mm × 40 mm and Φ 40 mm × 100 mm) were grown by the modified Bridgman method. The crystal structure was studied by X-ray diffraction and the Rietveld refinement method. The composition and morphology were characterized by scanning electron microscopy and metallurgical microscopy. The chemical state and vibration modes of surface elements were characterized by X-ray photoelectron spectroscopy and Raman spectra, and the electrical property was investigated by the Hall effect measurement, which indicates that all the single AgGaGenSe2(n+1) crystals are n-type semiconductors. The transmittance of all as-grown AgGaGenSe2(n+1) crystal wafers exceed 65% in the transparent range, and the band gap increases from 2.05 eV for AgGaGe1.5Se5 to 2.14 eV for AgGaGe9Se20. Besides, after being annealed in two different conditions, the wafers show different changes. We discovered a special decomposition phenomenon during the annealing process and found the more appropriate annealing method at last. In addition, the absorption peaks at 4.2, 10, and 14.9 µm of wafers have been nearly eliminated, and the quality of most crystals has been improved.

8.
Biomacromolecules ; 22(6): 2299-2324, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33957752

RESUMEN

Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos , Preparaciones de Acción Retardada , Semivida , Humanos , Proteínas
9.
Analyst ; 146(13): 4154-4160, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33977966

RESUMEN

Self-assembly performed in ionic liquids (ILs) as a unique solvent promises distinct functions and applications in sensors, therapeutics, and optoelectronic devices due to the rich interactions between nanoparticle building blocks and ILs. However, the general consideration that common nanoparticles are readily destabilized by counterions in an IL has largely prevented researchers from investigating controlled nanoparticle assembly in IL-based systems. This study explores the assembling behaviour of double-stranded (ds) DNA-functionalized gold nanoparticles (dsDNA-AuNPs) in hydrated ionic liquids. The DNA base pair stacking assembly of dsDNA-AuNPs occurs at a low IL concentration (<5%). However, a moderate ionic liquid concentration (5-40%) can de-hybridize dsDNA and leaves single-stranded (ss) DNA stabilizing the AuNPs. In concentrated ionic liquids (>40%), interestingly, the higher ionic strength leads to the assembly of DNA-AuNPs. The triphasic assembly trend is also generally observed regardless of the type of IL. By down-regulation of DNA's melting temperature with the IL, the assembly of DNA-AuNPs affords robust response to a lower temperature range, promising applications in plasmonic devices and range-tunable temperature sensors.


Asunto(s)
Líquidos Iónicos , Nanopartículas del Metal , ADN , ADN de Cadena Simple , Oro
10.
Inorg Chem ; 60(10): 7345-7350, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33902276

RESUMEN

Second-harmonic generation (SHG) is a kind of nonlinear optical phenomenon which has been widely used in optical devices, and factors influencing its signal are very complex. Here, taking advantage of excellent structural designability and overcoming the limitations of various coordinations of lanthanide metals, for the first time a series of lanthanide metal-organic frameworks (Ln-MOFs) with one particular ligand were synthesized and structurally characterized to study the interference of the SHG signal. The optical performance including single-photon fluorescence and SHG was collected and analyzed. It is found that all 13 kinds of Ln-MOFs can be divided into 2 crystal configurations by their individual space groups and Ln-MOFs with coordinated metal atoms from La to Tb possessing the noncentrosymmetric C2 space group exhibit the SHG property, the intensity of which depends on the type of metal atoms, the pumping wavelength, and the size of the single-crystal particles. This is the first time that the relationship between the nonlinear optical properties and the structure, metal atoms, pumping wavelength, crystal size of the whole series of Ln-MOFs is studied systematically, providing a lot of interesting results and enriching the research scope of nonlinear optics and materials science.

11.
Inorg Chem ; 60(15): 11098-11109, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34269566

RESUMEN

Quaternary nonlinear optical single crystals AgxGaxGe1-xSe2 (x = 0.250, 0.167) were grown by the Bridgman method in a four-zone furnace. The thermal expansion behavior of AgxGaxGe1-xSe2 (x = 0.25, 0.167) was studied by the method of single-crystal X-ray diffraction from 150 to 295 K and powder X-ray diffraction in the range of 298-773 K. Both results show the crystals have positive linear thermal expansion coefficients in different directions and a positive volume thermal expansion coefficient, and it is observed that they satisfy the relationship of αa > αc > αb and αV ≈ αa + αb + αc for the orthorhombic structure. It is found that the AgxGaxGe1-xSe2 (x = 0.25, 0.167) unit cells varying with temperature were mainly dominated by variations in framework geometry (AgSe4 tetrahedron), and the thermal motion of Ag atoms in the AgSe4 tetrahedron. As it was revealed, according to the powder X-ray diffraction, it is found that the isotropic thermal atomic displacement parameter of the Ag atoms is much larger than those of the Se and Ga(Ge) atoms in the AgSe4 tetrahedron. Furthermore, anisotropic atomic displacement parameters (ADPs) of Ag atoms are extracted from the single-crystal diffraction; the ADPs along the a axis, b axis, and c axis have a significant difference, which means the thermal vibration of Ag atoms is anisotropic. It is of great significance for improving crystal growth technology and understanding the thermal properties of this kind of crystals.

12.
Pacing Clin Electrophysiol ; 44(7): 1151-1162, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33990979

RESUMEN

BACKGROUND: Contemporary radiofrequency catheter ablation (RFCA) approaches for atrial fibrillation (AF) have reached an efficacy "ceiling". Ethanol infusion into the vein of Marshall (EI-VOM) has shown potential in preliminary studies. Data on EI-VOM are largely limited to small single-center reports, and clinical benefits and risks have not been systematically examined. Therefore, we performed a meta-analysis to assess the feasibility, efficacy, and safety of EI-VOM for AF. METHODS: All studies evaluating EI-VOM for AF were initially searched from four electronic search engines: PubMed, Web of Science, Cochrane Library, and SinoMed. We used RevMan5.4 to calculate pooled outcomes of randomized controlled trial and cohort studies. We also performed single-arm meta-analyses using Open Meta-Analyst. RESULTS: We included a total of 10 studies with 1322 patients. Successful EI-VOM was performed in 86.7% (95% CI 81.9-91.4%) of patients. For persistent AF patients, the recurrence of AF and/or atrial tachycardia (AT) was significantly lower in the EI-VOM combined with RFCA group compared with RFCA alone group (RR 0.58, 95% CI 0.35 to 0.96, p = 0.04). EI-VOM combined with RFCA significantly increased the rate of bidirectional mitral isthmus block compared with RFCA alone in AF patients (RR 1.50, 95% CI 1.34 to 1.67, p < 0.001). There were nine cardiac tamponades observed in 644 patients (PR 0.8%, 95% CI 0.1-1.5%) who were performed EI-VOM combined with RFCA. CONCLUSIONS: Our meta-analysis brings encouraging evidence that adjuvant EI-VOM reduces AF and/or AT recurrence rate in persistent AF patients and increases the success rate of bidirectional mitral isthmus block.


Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Etanol/administración & dosificación , Etanol/efectos adversos , Estudios de Factibilidad , Humanos , Infusiones Intravenosas , Resultado del Tratamiento , Venas
13.
J Cardiovasc Pharmacol ; 75(5): 446-454, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32141990

RESUMEN

Atherosclerosis (AS), known as the chronic inflammatory disease, results from the dysfunction of vascular endothelial cells (VECs). Transforming growth factor-ß1 (TGF-ß1) has been reported to be induced by oxidized low-density lipoprotein (ox-LDL) and contribute to AS-related vascular endothelial cell damage. This work planned to study the mechanism of TGF-ß1 in vascular endothelial cell damage. We found that TGF-ß1 was activated by ox-LDL in human umbilical vascular endothelial cells (HUVECs). Silence of TGF-ß1 reversed the inductive effect of ox-LDL on apoptosis and inflammatory response of HUVECs. Mechanistically, microRNA-4286 (miR-4286) targeted and inhibited TGF-ß1 to inhibit Smad3, and Smad3 bound to the promoter of miR-4286 to repress its transcription. Rescue assays indicated that miR-4286 ameliorated the ox-LDL-induced apoptosis and inflammatory response through inhibiting TGF-ß1. In conclusion, our study first demonstrated that miR-4286/TGF-ß1/Smad3-negative feedback loop ameliorated vascular endothelial cell damage by attenuating apoptosis and inflammatory response, providing new thoughts for promoting the treatment of AS.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Lipoproteínas LDL/toxicidad , MicroARNs/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Cultivadas , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , MicroARNs/genética , Transducción de Señal , Proteína smad3/genética , Factor de Crecimiento Transformador beta1/genética
14.
Inorg Chem ; 59(18): 13144-13152, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32865403

RESUMEN

Various spectroscopic properties of Yb3+-doped Y2SiO5 crystal have been extensively investigated due to its promising application in quantum information processing. However, the local structure, electronic structure of Yb3+:Y2SiO5 crystal, and its optical and magnetic properties have not been comprehensively studied from a theoretical viewpoint. In this work, the geometric and electronic structures of Yb3+ that replaces two crystallographic Y3+ sites in the Y2SiO5 crystal are first obtained by the method of density functional theory (DFT). Then, the optical, electron paramagnetic resonance (EPR), and optically detected magnetic resonance (ODMR) spectra for 171Yb3+ (nuclear spin I = 1/2) at such two sites are simultaneously calculated in the framework of the complete diagonalization (of energy) matrix (CDM) based on the optimized local structure around 171Yb3+ ion by DFT. The various calculated spectroscopic properties by such combined theoretical approach are consistent with the experimental ones, which demonstrates that CDM is effective and particularly suitable for calculating hyperfine A-tensors under zero, low, and intermediate magnetic field. More importantly, based on the obtained accurate hyperfine structure of 171Yb3+ in Y2SiO5 crystal, the possible "clock transitions", which can enhance the optical coherence time, can be assigned or predicted by the present approach. This study successfully explains the spectroscopic properties of 171Yb3+-doped Y2SiO5 and provides a feasible method to design and search for practical rare-earth-doped quantum information materials for the community.

15.
Inorg Chem ; 58(16): 10846-10855, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31361478

RESUMEN

AgGaGeS4 is a new promising nonlinear-optical crystal for frequency-shifting a 1.064 µm laser into mid-IR. This quaternary compound single crystal has been successfully grown by a modified vertical Bridgman method. Although it has high transparency in the 0.5-11.5 µm spectral range, the nonideal transparency at 2.9, 4, and 10 µm restricts further optical experiments and applications. Therefore, in this work, AgGaGeS4 wafers were annealed in vacuum and with a AgGaGeS4 polycrystalline powder at different temperatures. After annealing, under certain conditions, the optical quality of AgGaGeS4 wafers shows evident improvement, and it is found that volatile GeS2 easily results in stoichiometric deviation, even decomposition, so that the choice of temperature plays a pivotal role in the annealing treatment. Conclusively, the results confirm that thermal annealing could effectively improve the optical quality of the as-grown AgGaGeS4 crystal and annealings with a AgGaGeS4 polycrystalline powder at 550 °C and in vacuum at 500 °C are optimum processes. After such treatment, the transmittance of the wafer is about 70% and the absorptions at 2.9, 4, and 10 µm have almost been eliminated. Besides, the binding energy tends to get smaller with increasing temperature and the Raman phonon frequency has scarcely changed, indicating that the thermal annealing processes only renovate the crystal structure by atomic diffusion or dislocation climbing but without changes in the main structure. At last, through Hall measurement and positron annihilation lifetime spectroscopy, we find that the carrier concentration has little change after annealing, while the cation vacancy sharply declines, and the trapping state of the positron is mainly attributed by the substitution of Ge4+ by Ga3+.

16.
Inorg Chem ; 58(9): 5865-5874, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30977358

RESUMEN

AgGaGe nS2( n+1) crystal is a series of quaternary nonlinear optical materials for mid-IR laser applications of converting a 1.064 µm pump signal (Nd:YAG laser) to 4-11 µm laser output, but only AgGaGeS4 has attracted the most attention, remaining the other promising AgGaGe nS2( n+1) crystal whose physicochemical properties can be modulated by n value. In this work, AgGaGe nS2( n+1) ( n = 2, 3, 4, and 5) polycrystals are synthesized by vapor transport and mechanical oscillation method with different cooling processes. High-resolution X-ray diffraction analysis and refinement have revealed that all the four compounds are crystallized in the noncentrosymmetric orthorhombic space group Fdd2, resulting in the excellent nonlinear optical property, and the distortion of tetrahedron with the variation of n value causes the discrepancy of physicochemical property. Besides, using the modified Bridgman method, AgGaGe nS2( n+1) single crystals with 15 mm diameter and 20-40 mm length have been grown. We have discussed the structure and composition of AgGaGe nS2( n+1) by XPS spectra and analyzed the three kinds of vibration modes of tetrahedral clusters by the Raman spectra. The Hall measurement indicates that the AgGaGe nS2( n+1) single crystals are p-type semiconductor, and the carrier concentration decreases with the increasing n value. All the transmittances of as-grown AgGaGe nS2( n+1) samples exceeds 60% in the transparent range, especially the transmittance of AgGaGe2S6, is up to 70% at 1064 nm, and the band gap of as-grown crystal increases from 2.85 eV for AgGaGe2S6 to 2.92 eV for AgGaGe5S12. After a thermal annealing treatment, the absorptions at 2.9, 4, and 10 µm have been eliminated, and the band gap changed into the range of 2.89-2.96 eV.

17.
Biomacromolecules ; 19(7): 2944-2956, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29641895

RESUMEN

Hyaluronic-acid (HA)-coated LOX-1-specific siRNA-condensed cell-penetrating peptide (CPP) nanocomplexes (NCs) were developed for targeted gene delivery to macrophages and suppression of lipid accumulation. The HA coating facilitated the accumulation of nanoparticles at leaky endothelium overexpressing CD44 receptors and was further degraded by hyaluronidase (HAase) intraplaques for exposing the naked CPP NCs and achieving the ultimate location into macrophages. The surface coating of HA was verified by the increased particle size, inverted zeta potential, and TEM images. The targeting mechanism was studied on the established injured endothelium-macrophage coculture system, which revealed that modification of higher molecular weight HA and higher HA coating density on NCs, termed as NPs-3, improved the intracellular uptake of nanoparticles by macrophages. Macrophages internalized NCs via caveolae-mediated endocytosis pathway. Moreover, NPs-3 exhibited better cellular drug efficacy in preventing macrophage-derived foam cell formation than other preparations. Compared with NCs, HA decoration showed enhanced atherosclerotic-lesion-targeting efficiency, proven by results from ex vivo imaging. Furthermore, atheroprotective efficacy study in apoE-deficient mice showed that NPs-3 had the best potent efficacy, which was demonstrated by the fewest atherosclerotic lesions sizes and lipid accumulation, the lowest macrophage infiltration, and the lowest expression of monocyte chemoattractant protein-1 (MCP-1), respectively. Collectively, the HA-coated CPP NCs were promising nanocarriers for efficient macrophage-targeted gene delivery and antiatherogenic therapy.


Asunto(s)
Aterosclerosis/terapia , Péptidos de Penetración Celular/química , Ácido Hialurónico/química , Macrófagos/metabolismo , Nanopartículas/química , Tratamiento con ARN de Interferencia/métodos , Transfección/métodos , Animales , Endocitosis , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Nanopartículas/efectos adversos , Células THP-1
18.
Zhonghua Xin Xue Guan Bing Za Zhi ; 42(3): 241-6, 2014 Mar.
Artículo en Zh | MEDLINE | ID: mdl-24831483

RESUMEN

OBJECTIVE: To compare the efficacy between left radial approach (LRA) and right radial approach (RRA) for coronary angiography (CAG). METHODS: The following databases were searched, including PubMed, Embase, Web of science, Cochrane Library, CBM, VIP, Wanfang databases and CNKI, from creation of database to January 2013. Two reviewers extracted data independently, according to inclusive criteria, exclusion criteria and methods of Cochrane Collaboration. Statistical analysis was performed using Review Manager Software (RevMan 5.1). RESULTS: Eleven trials with 5 442 patients were included in the systematic review. The results of meta-analysis showed that when compared with RRA, LRA did not increase the failure rate of the procedures (OR = 1.04, 95%CI 0.80-1.35, P > 0.05) and amount of contrast medium (mean difference = 2.39, 95%CI -0.30-5.08), P > 0.05). However, LRA was superior to RRA in reducing fluoroscopy time (standardized mean difference = 0.15, 95%CI 0.06-0.24, P < 0.01). In addition, the incidence of severe tortuosity of subclavian artery was significantly lower with LRA (OR = 4.65, 95%CI 1.98-10.88, P < 0.01). CONCLUSIONS: Based on the current evidence, LRA shares similar safety with RRA for CAG and is superior to RRA in certain respects. LRA can thus be used either as an alternative approach or routine approach for CAG.


Asunto(s)
Angiografía Coronaria/métodos , Arteria Radial , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
Front Vet Sci ; 11: 1394290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846790

RESUMEN

There is a gradual transition from water to dryland rearing of geese. In this study, we performed 16S rRNA sequencing (16S rRNA-seq) and transcriptome sequencing (RNA-seq) to reveal the effects of cage rearing (CR) and floor rearing (FR) systems on the microbial composition and transcriptome of the goose ileum. Through 16S rRNA-seq, Linear Discriminant Analysis Effect Size (LEfSe) analysis identified 2 (hgcI_clade and Faecalibacterium) and 14 (Bacteroides, Proteiniphilum, Proteiniclasticum, etc.) differential microbiota in CR and FR, respectively. The rearing system influenced 4 pathways including biosynthesis of amino acids in ileal microbiota. Moreover, we identified 1,198 differentially expressed genes (DEGs) in the ileum mucosa, with 957 genes up-regulated in CR and 241 genes up-regulated in FR. In CR, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the significant enrichment (p < 0.05) of 28 KEGG pathways, most of which were associated with amino acid metabolism. In FR, up-regulated DEGs were mainly enriched in KEGG pathways associated with cellular processes, including apoptosis, necroptosis, and cellular senescence. Spearman correlation analysis of differential microbiota and amino acid metabolism-related DEGs in CR showed a significant positive correlation. Additionally, differential microbiota of FR, Phascolarctobacterium and Sutterella, were positively correlated with FGF10 (p < 0.05) and PIK3R1 (p < 0.01), respectively. In conclusion, there might be differences in ileal amino acid metabolism levels between CR and FR geese, and the observed increase in harmful bacterial species in FR might impact the activity of ileal cells.

20.
ACS Nano ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041805

RESUMEN

Exogenous polysulfhydryls (R-SH) supplementation and nitric oxide (NO) gas molecules delivery provide essential antioxidant buffering pool components and anti-inflammatory species in cellular defense against injury, respectively. Herein, the intermolecular disulfide bonds in bovine serum albumin (BSA) molecules were reductively cleaved under native and mild conditions to expose multiple sulfhydryl groups (BSA-SH), then sulfhydryl-nitrosylated (R-SNO), and nanoprecipitated to form injectable self-sulfhydrated, nitro-fixed albumin nanoparticles (BSA-SNO NPs), allowing albumin to act as a NO donor reservoir and multiple sulfhydryl group transporter while also preventing unfavorable oxidation and self-cross-linking of polysulfhydryl groups. In two mouse models of ischemia/reperfusion-induced and endotoxin-induced acute liver injury (ALI), a single low dosage of BSA-SNO NPs (S-nitrosothiols: 4 µmol·kg-1) effectively attenuated oxidative stress and systemic inflammation cascades in the upstream pathophysiology of disease progression, thus rescuing dying hepatocytes, regulating host defense, repairing microcirculation, and restoring liver function. By mechanistically upregulating the antioxidative signaling pathway (Nrf-2/HO-1/NOQ1) and inhibiting the inflammatory cytokine storm (NF-κB/p-IκBα/TNF-α/IL-ß), BSA-SNO NPs blocked the initiation of the mitochondrial apoptotic signaling pathway (Cyto C/Bcl-2 family/caspase-3) and downregulated the cell pyroptosis pathway (NLRP3/ASC/IL-1ß), resulting in an increased survival rate from 26.7 to 73.3%. This self-sulfhydrated, nitro-fixed functionalized BSA nanoformulation proposes a potential drug-free treatment strategy for ALI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA