Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Neurosci Res ; 99(8): 1908-1921, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33217775

RESUMEN

Adolescent alcohol drinking is widely recognized as a significant public health problem, and evidence is accumulating that sufficient levels of consumption during this critical period of brain development have an enduring impact on neural and behavioral function. Recent studies have indicated that adolescent intermittent ethanol (AIE) exposure alters astrocyte function, astrocyte-neuronal interactions, and related synaptic regulation and activity. However, few of those studies have included female animals, and a broader assessment of AIE effects on the proteins mediating astrocyte-mediated glutamate dynamics and synaptic function is needed. We measured synaptic membrane expression of several such proteins in the dorsal and ventral regions of the hippocampal formation (DH, VH) from male and female rats exposed to AIE or adolescent intermittent water. In the DH, AIE caused elevated expression of glutamate transporter 1 (GLT-1) in both males and females, elevated postsynaptic density 95 expression in females only, and diminished NMDA receptor subunit 2A expression in males only. AIE and sex interactively altered ephrin receptor A4 (EphA4) expression in the DH. In the VH, AIE elevated expression of the cystine/glutamate antiporter and the glutamate aspartate transporter 1 (GLAST) in males only. Compared to males, female animals expressed lower levels of GLT-1 in the DH and greater levels of ephrin receptor B6 (EphB6) in the VH, in the absence of AIE effects. These results support the growing literature indicating that adolescent alcohol exposure produces long-lasting effects on astrocyte function and astrocyte-neuronal interactions. The sex and subregion specificity of these effects have mechanistic implications for our understanding of AIE effects generally.


Asunto(s)
Astrocitos/metabolismo , Etanol/administración & dosificación , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Femenino , Homeostasis/efectos de los fármacos , Humanos , Masculino , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor EphB6/metabolismo
2.
Alcohol Clin Exp Res ; 45(11): 2231-2245, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34585391

RESUMEN

BACKGROUND: Few studies have examined the association between APOE genotype and alcohol use. Although some of these studies have reported outcomes associated with a history of drinking, none have examined alcohol-seeking behavior. In addition, no preclinical studies have examined alcohol use as a function of APOE genotype with or without traumatic brain injury. METHODS: Male and female human APOE3- and APOE4-targeted replacement (TR) mice were used to assess voluntary alcohol seeking longitudinally using a 2-bottle choice paradigm conducted within the automated IntelliCage system prior to and following repeated mild TBI (rmTBI). Following an acquisition phase in which the concentration of ethanol (EtOH) was increased to 12%, a variety of drinking paradigms that included extended alcohol access (EAA1 and EAA2), alcohol deprivation effect (ADE), limited access drinking in the dark (DID), and progressive ratio (PR) were used to assess alcohol-seeking behavior. Additional behavioral tasks were performed to measure cognitive function and anxiety-like behavior. RESULTS: All groups readily consumed increasing concentrations of EtOH (4-12%) during the acquisition phase. During the EAA1 period (12% EtOH), there was a significant genotype effect in both males and females for EtOH preference. Following a 3-week abstinence period, mice received sham or rmTBI resulting in a genotype- and sex-independent main effect of rmTBI on the recovery of righting reflex and a main effect of rmTBI on spontaneous home-cage activity in females only. Reintroduction of 12% EtOH (EAA2) resulted in a significant effect genotype for alcohol preference in males with APOE4 mice displaying increased preference and motivation for alcohol compared with APOE3 mice independent of TBI while in females, there was a significant genotype × TBI interaction under the ADE and DID paradigms. Finally, there was a main effect of rmTBI on increased risk-seeking behavior in both sexes, but no effect on spatial learning or cognitive flexibility. CONCLUSION: These results suggest that sex and APOE genotype play a significant role in alcohol consumption and may subsequently influence long-term recovery following traumatic brain insults.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Apolipoproteínas E/metabolismo , Conducta Adictiva/metabolismo , Genotipo , Consumo de Bebidas Alcohólicas/genética , Animales , Apolipoproteínas E/genética , Conducta Adictiva/genética , Condicionamiento Clásico/fisiología , Femenino , Humanos , Masculino , Ratones
3.
Cogn Affect Behav Neurosci ; 18(4): 705-717, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29943174

RESUMEN

Feeling emotionally close to others during social interactions is a ubiquitous and meaningful experience that can elicit positive affect. The present study integrates functional magnetic resonance imaging (fMRI) and ecological momentary assessment (EMA) to investigate whether neural response to social reward (1) is related to the experience of emotional closeness and (2) moderates the association between emotional closeness and positive affect during and following social interactions. In this study, 34 typically developing adolescents (ages 14-18 years) completed a social-reward fMRI task, a monetary-reward fMRI task, and a 2-week EMA protocol regarding their social and affective experiences. Adolescents with greater right posterior superior temporal sulcus/temporoparietal junction (pSTS/TPJ) response to social reward reported greater mean momentary emotional closeness. Neural response to social reward in the right pSTS/TPJ moderated how strongly momentary emotional closeness was associated with both concurrent positive affect and future peak happiness, but in different ways. Although emotional closeness had a significant positive association with concurrent positive affect among adolescents at both high and low right pSTS/TPJ response based on a follow-up simple slopes test, this association was stronger for adolescents with low right pSTS/TPJ response. In contrast, emotional closeness had a significant positive association with future peak happiness among adolescents with high right pSTS/TPJ response, but not among those with low right pSTS/TPJ response. These findings demonstrate the importance of neural response to social reward in key social processing regions for everyday experiences of emotional closeness and positive affect in the context of social interactions.


Asunto(s)
Afecto/fisiología , Encéfalo/fisiología , Relaciones Interpersonales , Recompensa , Conducta Social , Adolescente , Conducta del Adolescente/fisiología , Conducta del Adolescente/psicología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Evaluación Ecológica Momentánea , Femenino , Humanos , Individualidad , Imagen por Resonancia Magnética , Masculino , Psicología del Adolescente
4.
Brain Cogn ; 89: 39-50, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24412087

RESUMEN

Anhedonia, a cardinal symptom of depression defined as difficulty experiencing pleasure, is also a possible endophenotype and prognostic factor for the development of depression. The onset of depression typically occurs during adolescence, a period in which social status and affiliation are especially salient. The medial prefrontal cortex (mPFC), a region implicated in reward, self-relevant processing, and social cognition, exhibits altered function in adults with anhedonia, but its association with adolescent anhedonia has yet to be investigated. We examined neural response to social reward in 27 late adolescents, 18-21years old, who varied in social anhedonia. Participants reported their social anhedonia, completed ratings of photos of unfamiliar peers, and underwent a functional magnetic resonance imaging task involving feedback about being liked. Adolescents with higher social anhedonia exhibited greater mPFC activation in response to mutual liking (i.e., being liked by someone they also liked) relative to received liking (i.e., being liked by someone whom they did not like). This association held after controlling for severity of current depressive symptoms, although depressive severity was also associated with greater mPFC response. Adolescents with higher levels of social anhedonia also had stronger positive connectivity between the nucleus accumbens and the mPFC during mutual versus received liking. These results, the first on the pathophysiology of adolescent anhedonia, support altered neural reward-circuit response to social reward in young people with social anhedonia.


Asunto(s)
Anhedonia/fisiología , Corteza Prefrontal/fisiopatología , Recompensa , Adolescente , Encéfalo/fisiopatología , Mapeo Encefálico , Depresión/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiopatología , Estriado Ventral/fisiopatología , Adulto Joven
5.
Front Physiol ; 15: 1285376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332987

RESUMEN

Early initiation of alcohol use during adolescence, and adolescent binge drinking are risk factors for the development of alcohol use disorder later in life. Adolescence is a time of rapid sex-dependent neural, physiological, and behavioral changes as well as a period of heightened vulnerability to many effects of alcohol. The goal of the present studies was to determine age-related changes in blood (leukocyte populations) and body composition across adolescence and early adulthood, and to investigate whether adolescent intermittent ethanol (AIE) exposure would alter the trajectory of adolescent development on these broad physiological parameters. We observed significant ontogenetic changes in leukocyte populations that were mirrored by an age-related increase in cytokine expression among mixed populations of circulating leukocytes. Despite these developmental changes, AIE did not significantly alter overall leukocyte numbers or cytokine gene expression. However, AIE led to sex-specific changes in body fat mass and fat percentage, with AIE-exposed male rats showing significantly decreased fat levels and female rats showing significantly increased fat levels relative to controls. These changes suggest that while AIE may not alter overall leukocyte levels, more complex phenotypic changes in leukocyte populations could underlie previously reported differences in cytokine expression. Coupled with long-term shifts in adipocyte levels, this could have long-lasting effects on innate immunity and the capacity of individuals to respond to later immunological and physiological threats.

6.
Pharmacol Biochem Behav ; 223: 173513, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610590

RESUMEN

Binge patterns of alcohol use, prevalent among adolescents, are associated with a higher probability of developing alcohol use disorders (AUD) and other psychiatric disorders, like anxiety and depression. Additionally, adverse life events strongly predict AUD and other psychiatric disorders. As such, the combined fields of stress and AUD have been well established, and animal models indicate that both binge-like alcohol exposure and stress exposure elevate anxiety-like behaviors. However, few have investigated the interaction of adolescent intermittent ethanol (AIE) and adult stressors. We hypothesized that AIE would increase vulnerability to restraint-induced stress (RS), manifested as increased anxiety-like behavior. After AIE exposure, in adulthood, animals were tested on forced swim (FST) and saccharin preference (SP) and then exposed to either RS (90 min/5 days) or home-cage control. Twenty-four hours after the last RS session, animals began testing on the elevated plus maze (EPM), and were re-tested on FST and SP. A separate group of animals were sacrificed in adulthood after AIE and RS, and brains were harvested for immunoblot analysis of dorsal and ventral hippocampus. Consistent with previous reports, AIE had no significant effect on closed arm time in the EPM (anxiety-like behavior). However, in male rats the interaction of AIE and adult RS increased time spent in the closed arms. No effect was observed among female animals. AIE and RS-specific alterations were found in glial and synaptic markers (GLT-1, FMRP and PSD-95) in male animals. These findings indicate AIE has sex-specific effects on both SP and the interaction of AIE and adult RS, which induces a propensity toward anxiety-like behavior in males. Also, AIE produces persistent hippocampal deficits that may interact with adult RS to cause increased anxiety-like behaviors. Understanding the mechanisms behind this AIE-induced increase in stress vulnerability may provide insight into treatment and prevention strategies for alcohol use disorders.


Asunto(s)
Ansiedad , Consumo Excesivo de Bebidas Alcohólicas , Etanol , Animales , Femenino , Masculino , Ratas , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/patología , Consumo de Bebidas Alcohólicas/psicología , Alcoholismo , Ansiedad/etiología , Ansiedad/metabolismo , Ansiedad/patología , Ansiedad/psicología , Trastornos de Ansiedad/etiología , Trastornos de Ansiedad/metabolismo , Trastornos de Ansiedad/patología , Trastornos de Ansiedad/psicología , Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Consumo Excesivo de Bebidas Alcohólicas/patología , Consumo Excesivo de Bebidas Alcohólicas/psicología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Etanol/efectos adversos , Etanol/farmacología , Factores Sexuales , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Estrés Psicológico/psicología
7.
Addict Neurosci ; 42022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36643603

RESUMEN

Alcohol consumption in adolescence causes multiple acute negative changes in neural and behavioral function that persist well into adulthood and possibly throughout life. The medial prefrontal cortex (mPFC) and dorsal hippocampus are critical for executive function and memory and are especially vulnerable to adolescent ethanol exposure. We have reported that astrocytes, particularly in the mPFC, change both in morphology and synaptic proximity during adolescence. Moreover, adolescent intermittent ethanol (AIE) exposure produces enduring effects on both astrocyte function and synaptic proximity in the adult hippocampal formation, and the latter effect was reversed by the clinically used agent gabapentin (Neurontin), an anticonvulsant and analgesic that is an inhibitor of the VGCC α2δ1 subunit. These findings underscore the importance of investigating AIE effects on astrocytes in the mPFC, a region that undergoes marked changes in structure and connectivity during adolescence. Using astrocyte-specific viral labeling and immunohistochemistry, mPFC astrocytic morphology and colocalization with AMPA-(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptor 1 (GluA1), an AMPA receptor subunit and established neuronal marker of excitatory synapses, were assessed to quantify the proximity of astrocyte processes with glutamatergic synaptic puncta. AIE exposure significantly reduced astrocyte-synaptic proximity in adulthood, an effect that was reversed by sub-chronic gabapentin treatment in adulthood. There was no effect of AIE on astrocytic glutamate homeostasis machinery or neuronal synaptic proteins in the mPFC. These findings indicate a possible glial-neuronal mechanism underlying the effects of AIE on frontal lobe-mediated behaviors and suggest a specific therapeutic approach for the amelioration of those effects.

8.
Alcohol ; 100: 31-39, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35182671

RESUMEN

Adolescent alcohol abuse is a significant public health concern, with approximately 4.3 million U.S. adolescents reporting monthly binge drinking. Excessive ethanol consumption during adolescence has been linked to dysregulation of the neuroimmune system, particularly in the hippocampus. Because there are sex differences in both neuroimmune responses and ethanol's pharmacologic actions, this study tested whether there were disparate effects based on sex in glial cells and neurodegeneration in adulthood after the adolescent intermittent ethanol (AIE) model. Male and female adolescent Sprague-Dawley rats underwent AIE. In adulthood, immunohistochemical techniques were utilized to determine the effects of AIE on astrocytes and microglia, and Fluoro-Jade C (FJC) was used to assess neurodegeneration in the hippocampus. AIE exposure significantly increased astrocyte activation in the cornu ammonis 1 (CA1), CA2/3, and dentate gyrus (DG) in both male and female rats with no discernible sex differences in immunoreactivity. Likewise, the number of GFAP + cells was significantly increased by AIE across the hippocampus. In our microglial assessment, AIE only led to increased Iba1 immunoreactivity in the CA1 but not CA2/3 or DG regions. However, the number of Iba1+ cells was increased by AIE in both the CA1 and DG subregions. In the DG, the ethanol effect was observed in both sexes, but in the CA1, AIE-induced increased Iba1 cells were only observed in females. In regard to neurodegeneration, there were no persisting AIE effects on FJC + cells. These findings indicate that AIE alters hippocampal glial cells in adulthood, in the absence of active neurodegeneration. However, while AIE induced long-term elevation of astroglial measures in both males and females, persisting AIE-induced microglial activation was more sparse and sex-dependent. While the majority of these findings suggest that AIE has similar effects on glial morphology and number between males and females, additional work should determine whether there are molecular differences as well as innate sex differences in glial interaction with AIE's influence on glial functions in behavior.


Asunto(s)
Etanol , Hipocampo , Animales , Etanol/farmacología , Femenino , Masculino , Neurogénesis , Neuroglía , Ratas , Ratas Sprague-Dawley
9.
Neuroscience ; 506: 68-79, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343720

RESUMEN

In the United States, approximately 90% of alcohol consumed by adolescents is binge drinking. Binge-like ethanol exposure during adolescence promotes dysregulation of neurotrophic responses and neurogenesis in the hippocampus. These effects include changes in proliferation, regulation, differentiation, and maturation of neurons, and there is indication that such effects may be disproportionate between sexes. This study determined whether sex impacts neurotrophic responses and neurogenesis in adulthood after adolescent intermittent ethanol (AIE) exposure. To determine this, adolescent rats underwent AIE with ethanol (5 g/kg). In adulthood, animals were euthanized, and immunohistochemical techniques and ELISAs were utilized to determine AIE effects on sex-specific neurogenesis factors and neurotrophic markers, respectively. AIE exposure led to a significant decrease in neurogenesis in the dentate gyrus of the hippocampal formation indicated by reductions in the numbers of DCX+, SOX2+ and Ki-67+ cells in male and female AIE-exposed rats. Additionally, AIE increased markers for the pro-inflammatory cytokines, TNF-α and IL-1ß, in the hippocampus into adulthood in male AIE-exposed rats only. No significant AIE-induced differences were observed in the anti-inflammatory cytokines, IL-10 and TGF-ß, nor in the neurotrophic factors BDNF and GDNF. Altogether, our findings indicate that although AIE did not have a persistent effect on hippocampal neurotrophic levels, there was still a reduction in neurogenesis. The neurogenic impairment was not sex specific, but the neurogenic deficits in males may be attributed to an increase in pro-inflammatory cytokine expression. A persistent impairment in neurogenesis may have an impact on both behavioral maladaptations and neurodegeneration in adulthood.


Asunto(s)
Etanol , Femenino , Masculino , Ratas , Animales , Etanol/toxicidad
10.
Alcohol ; 98: 43-50, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34808302

RESUMEN

Adolescent intermittent ethanol (AIE) exposure in rodents has been shown to alter adult behavior in several domains, including learning and memory, social interaction, affective behavior, and ethanol self-administration. AIE has also been shown to produce non-specific behavioral changes that compromise behavioral efficiency. Many studies of these types rely on measuring behavior in mazes and other enclosures that can be influenced by animals' activity levels and exploratory behavior, and relatively few such studies have assessed sex as a biological variable. To address the effects of AIE and its interaction with sex on these types of behavioral assays, male and female adolescent rats (Sprague Dawley) were exposed to 10 doses of AIE (5 g/kg, intra-gastrically [i.g.]), or control vehicle, over 16 days (postnatal day [PND] 30-46), and then tested for exploratory and anxiety-like behaviors on the novelty-induced hypophagia (NIH) task in an open field, the elevated plus (EPM) maze, and the Figure 8 maze. AIE reduced activity/exploratory behaviors in males on the anxiety-producing NIH and EPM tasks, but reduced activity in both males and females in the Figure 8 maze, a task designed to create a safe environment and reduce anxiety. Independent of AIE, females engaged in more rearing behavior than males during the NIH task but less in the EPM, in which they were also less active than males. AIE also increased EPM open arm time in females but not in males. These findings demonstrate previously unrecognized sex differences in the effects of AIE on activity, exploratory behavior, and anxiety-like behavior; additionally, they underscore the need to design future behavioral studies of AIE using sex as a variable and with rigorous attention to how AIE alters these behaviors.


Asunto(s)
Etanol , Caracteres Sexuales , Animales , Ansiedad/inducido químicamente , Conducta Exploratoria , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
11.
Int Rev Neurobiol ; 160: 305-340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34696877

RESUMEN

Alcohol drinking is often initiated during adolescence, and this frequently escalates to binge drinking. As adolescence is also a period of dynamic neurodevelopment, preclinical evidence has highlighted that some of the consequences of binge drinking can be long lasting with deficits persisting into adulthood in a variety of cognitive-behavioral tasks. However, while the majority of preclinical work to date has been performed in male rodents, the rapid increase in binge drinking in adolescent female humans has re-emphasized the importance of addressing alcohol effects in the context of sex as a biological variable. Here we review several of the consequences of adolescent ethanol exposure in light of sex as a critical biological variable. While some alcohol-induced outcomes, such as non-social approach/avoidance behavior and sleep disruption, are generally consistent across sex, others are variable across sex, such as alcohol drinking, sensitivity to ethanol, social anxiety-like behavior, and induction of proinflammatory markers.


Asunto(s)
Consumo de Bebidas Alcohólicas , Etanol , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Etanol/toxicidad , Femenino , Masculino , Roedores , Factores Sexuales
12.
Neural Regen Res ; 15(8): 1496-1501, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31997814

RESUMEN

Adolescent alcohol abuse is a substantive public health problem that has been the subject of intensive study in recent years. Despite reports of a wide range of effects of adolescent intermittent ethanol (AIE) exposure on brain and behavior, little is known about the mechanisms that may underlie those effects, and even less about treatments that might reverse them. Recent studies from our laboratory have indicated that AIE produced enduring changes in astrocyte function and synaptic activity in the hippocampal formation, suggesting the possibility of an alteration in astrocyte-neuronal connectivity and function. We utilized astrocyte-specific, membrane restricted viral labeling paired with immunohistochemistry to perform confocal single cell astrocyte imaging, three-dimensional reconstruction, and quantification of astrocyte morphology in hippocampal area CA1 from adult rats after AIE. Additionally, we assessed the colocalization of astrocyte plasma membrane labeling with immunoreactivity for AMPA-(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptor 1, an AMPA receptor subunit and established neuronal marker of excitatory synapses, as a metric of astrocyte-synapse proximity. AIE significantly reduced the colocalization of the astrocyte plasma membrane with synaptic marker puncta in adulthood. This is striking in that it suggests not only an alteration of the physical association of astrocytes with synapses by AIE, but one that lasts into adulthood - well after the termination of alcohol exposure. Perhaps even more notable, the AIE-induced reduction of astrocyte-synapse interaction was reversed by sub-chronic treatment with the clinically used agent, gabapentin (Neurontin), in adulthood. This suggests that a medication in common clinical use may have the potential to reverse some of the enduring effects of adolescent alcohol exposure on brain function. All animal experiments conducted were approved by the Duke University Institutional Animal Care and Use Committee (Protocol Registry Number A159-18-07) on July 27, 2018.

13.
Alcohol ; 85: 111-118, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31923560

RESUMEN

Ghrelin is an appetite-regulating peptide that is primarily secreted by endocrine cells in the stomach and is implicated in regulation of alcohol consumption and alcohol-reinforced behaviors. In the present study, adolescent Sprague-Dawley rats received intermittent ethanol (AIE) exposure by intragastric intubation (5 g/kg) or vapor inhalation, manipulations conducted between postnatal days (PD) 28-43. On the first and last day of AIE exposure, the level of intoxication was examined 1 h after ethanol gavage or upon removal from the vapor chamber. This was immediately followed by a blood draw for determination of the blood ethanol concentration (BEC) and plasma levels of acylated ghrelin (acyl-ghrelin; active). On PD29, plasma levels of acyl-ghrelin were significantly elevated in male (but not female) rats in response to acute ethanol exposure by both gastric gavage and vapor inhalation. Importantly, assessment of plasma acyl-ghrelin in response to repeated ethanol exposure revealed a complex interaction of both sex and method of AIE exposure. On PD43, vapor inhalation increased plasma acyl-ghrelin in both males and females compared to their air-control counterparts, whereas there was no change in plasma levels of acyl-ghrelin in either male or female rats in response to exposure by intragastric gavage. Assessment of plasma acyl-ghrelin following a 30-day ethanol-free period revealed AIE exposure did not produce a change in basal levels. In addition, an acute ethanol challenge in adult rats of 5 g/kg via gastric gavage had no effect on plasma ghrelin levels when assessed 1 h after initiation of exposure. Collectively, these observations suggest that acyl-ghrelin, a primary gut-brain signaling hormone, is elevated by ethanol during early adolescence independent of administration route, and in gender-dependent fashion.


Asunto(s)
Etanol/farmacología , Ghrelina/análogos & derivados , Administración por Inhalación , Animales , Etanol/administración & dosificación , Etanol/sangre , Femenino , Ghrelina/sangre , Intubación Gastrointestinal , Masculino , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales
14.
Sci Rep ; 9(1): 12110, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431637

RESUMEN

Adolescent intermittent ethanol (AIE) exposure diminishes neurogenesis and dendritic spine density in the dentate gyrus. The cholinesterase inhibitor, donepezil (Aricept), reverses AIE effects on dendritic spines, possibly by interacting with inflammatory and/or epigenetic mediators after AIE exposure. This study tests the hypothesis that donepezil reverses AIE-induced neuroimmune, and epigenetic changes in the adult dentate gyrus. Adolescent Sprague-Dawley male rats (PD30-43) were given 10 intermittent, intragastric doses of ethanol (5.0 g/kg) or isovolumetric water (AIW). Twenty-one days later half of the animals from each group were treated with either donepezil or isovolumetric water (i.g.) once daily for four days. Two hours after the last donepezil or water dose animals were sacrificed and brains prepared for immunohistochemical analyses. AIE reduced immunoreactivity for doublecortin (DCX) and increased immunoreactivity for activated caspase-3 and death receptor-3 in adulthood, suggesting an enduring attenuation of neurogenesis and an increase in progenitor death. These effects were reversed by donepezil treatment in adulthood. AIE also increased immunoreactivity for the inflammatory signaling molecules HMGB1 and RAGE, as well as the activated phosphorylated transcription factor pNFκB p65, and the gene silencing marker dimethylated histone H3K9. All of these AIE effects were also reversed by donepezil, with the exception of HMGB1.


Asunto(s)
Donepezilo/farmacología , Epigénesis Genética/genética , Etanol/toxicidad , Inflamación/tratamiento farmacológico , Acetilación/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/patología , Giro Dentado/efectos de los fármacos , Giro Dentado/patología , Modelos Animales de Enfermedad , Proteína Doblecortina , Epigénesis Genética/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Inflamación/patología , Metilación/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Ratas , Consumo de Alcohol en Menores/prevención & control
15.
Front Behav Neurosci ; 13: 209, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572141

RESUMEN

Sexual minority adolescents (SMA) are more likely to suffer from depression, putatively through experiences of social stress and victimization interfering with processing of social reward. Alterations in neural reward networks, which develop during adolescence, confer risk for the development of depression. Employing both social and monetary reward fMRI tasks, this is the first neuroimaging study to examine function in reward circuitry as a potential mechanism of mental health disparities between SMA and heterosexual adolescents. Eight SMA and 38 heterosexual typically developing adolescents completed self-report measures of depression and victimization, and underwent fMRI during monetary and peer social reward tasks in which they received positive monetary or social feedback, respectively. Compared with heterosexual adolescents, SMA had greater interpersonal depressive symptoms and exhibited blunted neural responses to social, but not monetary, reward in socioaffective processing regions that are associated with depressive symptoms. Specifically, compared with heterosexual adolescents, SMA exhibited decreased activation in the right medial prefrontal cortex, left anterior insula (AI), and right temporoparietal junction (TPJ) in response to being liked. Lower response in the right TPJ was associated with greater interpersonal depressive symptoms. These results suggest that interpersonal difficulties and the underlying substrates of response to social reward (perhaps more so than response to monetary reward) may confer risk for development of depressive symptoms in SMA.

16.
Prog Neuropsychopharmacol Biol Psychiatry ; 87(Pt A): 126-146, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28989099

RESUMEN

Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Trastornos Mentales/patología , Animales , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos
17.
Neuropharmacology ; 128: 1-10, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28919080

RESUMEN

Downregulation of the astroglial glutamate transporter GLT-1 is observed in the nucleus accumbens (NAc) following administration of multiple drugs of abuse. The decrease in GLT-1 protein expression following cocaine self-administration is dependent on both the amount of cocaine self-administered and the length of withdrawal, with longer access to cocaine and longer withdrawal periods leading to greater decreases in GLT-1 protein. However, the mechanism(s) by which cocaine downregulates GLT-1 protein remains unknown. We used qRT-PCR to examine gene expression of GLT-1 splice isoforms (GLT-1A, GLT-1B) in the NAc, prelimbic cortex (PL) and basolateral amygdala (BLA) of rats, following two widely used models of cocaine self-administration: short-access (ShA) self-administration, and the long-access (LgA) self-administration/incubation model. While downregulation of GLT-1 protein is observed following ShA cocaine self-administration and extinction, this model did not lead to a change in GLT-1A or GLT-1B gene expression in any brain region examined. Forced abstinence following ShA cocaine self-administration also was without effect. In contrast, LgA cocaine self-administration and prolonged abstinence significantly decreased GLT-1A gene expression in the NAc and BLA, and significantly decreased GLT-1B gene expression in the PL. No change was observed in NAc GLT-1A gene expression one day after LgA cocaine self-administration, indicating withdrawal-induced decreases in GLT-1A mRNA. In addition, LgA cocaine self-administration and withdrawal induced hypermethylation of the GLT-1 gene in the NAc. These results indicate that a decrease in NAc GLT-1 mRNA is only observed after extended access to cocaine combined with protracted abstinence, and that epigenetic mechanisms likely contribute to this effect.


Asunto(s)
Encéfalo/efectos de los fármacos , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Transportador 2 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Animales , Encéfalo/metabolismo , Condicionamiento Operante/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Transportador 2 de Aminoácidos Excitadores/genética , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Autoadministración
18.
Neuropsychopharmacology ; 43(6): 1212-1223, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28990593

RESUMEN

Adaptations in glutamate signaling within the brain's reward circuitry are observed following withdrawal from several abused drugs, including cocaine. These include changes in intrinsic cellular excitability, glutamate release, and glutamate uptake. Pharmacological or optogenetic reversal of these adaptations have been shown to reduce measures of cocaine craving and seeking, raising the hypothesis that regulation of glutamatergic signaling represents a viable target for the treatment of substance use disorders. Here, we tested the hypothesis that administration of the compound riluzole, which regulates glutamate dynamics in several ways, would reduce cocaine seeking in the rat self-administration and reinstatement model of addiction. Riluzole dose-dependently inhibited cue- and cocaine-primed reinstatement to cocaine, but did not affect locomotor activity or reinstatement to sucrose seeking. Moreover, riluzole reversed bidirectional cocaine-induced adaptations in intrinsic excitability of prelimbic (PL) and infralimbic (IL) pyramidal neurons; a cocaine-induced increase in PL excitability was decreased by riluzole, and a cocaine-induced decrease in IL excitability was increased to normal levels. Riluzole also reversed the cocaine-induced suppression of the high-affinity glutamate transporter 1 (EAAT2/GLT-1) in the nucleus accumbens (NAc). GLT-1 is responsible for the majority of glutamate uptake in the brain, and has been previously reported to be downregulated by cocaine. These results demonstrate that riluzole impairs cocaine reinstatement while rectifying several cellular adaptations in glutamatergic signaling within the brain's reward circuitry, and support the hypothesis that regulators of glutamate homeostasis represent viable candidates for pharmacotherapeutic treatment of psychostimulant relapse.


Asunto(s)
Trastornos Relacionados con Cocaína/tratamiento farmacológico , Trastornos Relacionados con Cocaína/fisiopatología , Antagonistas de Aminoácidos Excitadores/farmacología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Riluzol/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Cocaína/administración & dosificación , Sacarosa en la Dieta , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Actividad Motora/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas Sprague-Dawley , Autoadministración , Técnicas de Cultivo de Tejidos
19.
Neuropsychopharmacology ; 41(3): 675-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26202103

RESUMEN

Environmentally induced relapse to cocaine seeking requires the retrieval of context-response-cocaine associative memories. These memories become labile when retrieved and must undergo reconsolidation into long-term memory storage to be maintained. Identification of the molecular underpinnings of cocaine-memory reconsolidation will likely facilitate the development of treatments that mitigate the impact of cocaine memories on relapse vulnerability. Here, we used the rat extinction-reinstatement procedure to test the hypothesis that the Src family of tyrosine kinases (SFK) in the dorsal hippocampus (DH) critically controls contextual cocaine-memory reconsolidation. To this end, we evaluated the effects of bilateral intra-DH microinfusions of the SFK inhibitor, PP2 (62.5 ng per 0.5 µl per hemisphere), following re-exposure to a cocaine-associated (cocaine-memory reactivation) or an unpaired context (no memory reactivation) on subsequent drug context-induced instrumental cocaine-seeking behavior. We also assessed alterations in the phosphorylation state of SFK targets, including GluN2A and GluN2B N-methyl-D-aspartate (NMDA) and GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits at the putative time of memory restabilization and following PP2 treatment. Finally, we evaluated the effects of intra-DH PEAQX (2.5 µg per 0.5 µl per hemisphere), a GluN2A-subunit-selective NMDAR antagonist, following, or in the absence of, cocaine-memory reactivation on subsequent drug context-induced cocaine-seeking behavior. GluN2A phosphorylation increased in the DH during putative memory restabilization, and intra-DH PP2 treatment inhibited this effect. Furthermore, PP2-as well as PEAQX-attenuated subsequent drug context-induced cocaine-seeking behavior, in a memory reactivation-dependent manner, relative to VEH. These findings suggest that hippocampal SFKs contribute to the long-term stability of cocaine-related memories that underlie contextual stimulus control over cocaine-seeking behavior.


Asunto(s)
Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Extinción Psicológica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Familia-src Quinasas/metabolismo , Animales , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Extinción Psicológica/fisiología , Hipocampo/enzimología , Masculino , Consolidación de la Memoria/fisiología , Pirimidinas/farmacología , Quinoxalinas/farmacología , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Autoadministración , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores
20.
Biol Psychiatry ; 80(3): 207-15, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26946381

RESUMEN

BACKGROUND: As a more detailed picture of nervous system function emerges, diversity of astrocyte function becomes more widely appreciated. While it has been shown that cocaine experience impairs astroglial glutamate uptake and release in the nucleus accumbens (NAc), few studies have explored effects of self-administration on the structure and physiology of astrocytes. We investigated the effects of extinction from daily cocaine self-administration on astrocyte characteristics including glial fibrillary acidic protein (GFAP) expression, surface area, volume, and colocalization with a synaptic marker. METHODS: Cocaine or saline self-administration and extinction were paired with GFAP Westerns, immunohistochemistry, and fluorescent imaging of NAc core astrocytes (30 saline-administering and 36 cocaine-administering male Sprague Dawley rats were employed). Imaging was performed using a membrane-tagged lymphocyte protein tyrosine kinase-green fluorescent protein (Lck-GFP) driven by the GFAP promoter, coupled with synapsin I immunohistochemistry. RESULTS: GFAP expression was significantly reduced in the NAc core following cocaine self-administration and extinction. Similarly, we observed an overall smaller surface area and volume of astrocytes, as well as reduced colocalization with synapsin I, in cocaine-administering animals. Cocaine-mediated reductions in synaptic contact were reversed by the ß-lactam antibiotic ceftriaxone. CONCLUSIONS: Multiple lines of investigation indicate that NAc core astrocytes exist in a hyporeactive state following cocaine self-administration and extinction. Decreased association with synaptic elements may be particularly meaningful, as cessation of chronic cocaine use is associated with changes in synaptic strength and resistance to the induction of synaptic plasticity. We hypothesize that the reduced synaptic colocalization of astrocytes represents an important maladaptive cellular response to cocaine and the mechanisms underlying relapse vulnerability.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/patología , Cocaína/administración & dosificación , Cocaína/farmacología , Extinción Psicológica , Proteína Ácida Fibrilar de la Glía/deficiencia , Núcleo Accumbens/patología , Animales , Animales Modificados Genéticamente , Astrocitos/metabolismo , Ceftriaxona/farmacología , Recuento de Células , Proteína Ácida Fibrilar de la Glía/biosíntesis , Masculino , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Autoadministración , Sinapsis/efectos de los fármacos , Sinapsinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA