Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Icarus ; 3622021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33867569

RESUMEN

Daily, global wide angle imaging of Mars clouds in MARCI (MARs Color Imager, (Malin et al., 2008)) ultraviolet and visible bands reveals the spatial/seasonal distributions and physical characteristics of perihelion cloud trails (PCT); a class of high altitude (40-50 km), horizontally extended (200-1000 km, trending W to WSW) water ice clouds formed over specific southern low-to-mid latitude (5S-40S), mesoscale (~50 km) locations during the Mars perihelion, southern summer season. PCT were first reported in association with rim regions of Valles Marineris (Clancy et al., 2009). The current study employs MARCI 2007-2011 imaging to sample the broader distributions and properties of PCT; and indicates several distinct locations of peak occurrences, including SW Arsia Mons, elevated regions of Syria, Solis, and Thaumasia Planitia, along Valles Marineris margins, and the NE rim of Hellas Basin. PCT are present over Mars solar longitudes (L S ) of 210-310°, in late morning to mid afternoon hours (10am-3pm), and are among the brightest and most distinctive clouds exhibited during the perihelion portion of the Mars orbit. Their locations (i.e., eastern margin origins) correspond to strong local elevation gradients, and their timing to peak solar heating conditions (perihelion, subsolar latitudes and midday local times). They occur approximately on a daily basis among all locations identified (i.e., not daily at a single location). Based on cloud surface shadow analyses, PCT form at 40-50 km aeroid altitudes, where water vapor is generally at near-saturation conditions in this perihelion period (e.g. Millour et al., 2014). They exhibited notable absences during periods of planet encircling and regional dust storm activity in 2007 and 2009, respectively, presumably due to reduced water saturation conditions above 35-40 km altitudes associated with increased dust heating over the vertically extended atmosphere (e.g., Neary et al., 2019). PCT exhibit smaller particle sizes (R eff =0.2-0.5µm) than typically exhibited in the lower atmosphere, and incorporate significant fractions of available water vapor at these altitudes. PCT ice particles are inferred to form continuously (over ~4 hours) at their PCT eastern origins, associated with localized updrafts, and are entrained in upper level zonal/meridional winds (towards W or WSW with ~50 m/sec speeds at 40-50 km altitudes) to create long, linear cloud trails. PCT cloud formation is apparently forced in the lower atmosphere (≤10-15 km) by strong updrafts associated with distinctive topographic gradients, such as simulated in mesoscale studies (e.g., Tyler and Barnes, 2015) and indicated by the surface-specific PCT locations. These lower scale height updrafts are proposed to generate vertically propagating gravity waves (GW), leading to PCT formation above ~40 km altitudes where water vapor saturation conditions promote vigorous cloud ice formation. Recent mapping of GW amplitudes at ~25 km altitudes, from Mars Climate Sounder 15 µm radiance variations (Heavens et al., 2020), in fact demonstrates close correspondences to the detailed spatial distributions of observed PCT, relative to other potential factors such as surface albedo and surface elevation (or related boundary layer depths).

2.
Icarus ; 3412020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32921803

RESUMEN

Gravity waves in Mars's atmosphere strongly affect the general circulation as well as middle atmospheric cloud formation, but the climatology and sources of gravity waves in the lower atmosphere remain poorly understood. At Earth, the statistical variance in satellite observations of thermal emission above the instrumental noise floor has been used to enable measurement of gravity wave activity at a global scale. Here is presented an analysis of variance in calibrated radiance at 15.4 µm (635-665 cm-1) from off-nadir and nadir observations by the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter (MRO); a major expansion in the observational data available for validating models of Martian gravity wave activity. These observations are sensitive to gravity waves at 20-30 km altitude with wavelength properties (λ h =10-100 km, λ z > 5 km) that make them likely to affect the dynamics of the middle and upper atmosphere. We find that: (1) strong, moderately intermittent gravity wave activity is scattered over the tropical volcanoes and throughout the middle to high latitudes of both hemispheres during fall and winter, (2) gravity wave activity noticeably departs from climatology during regional and global dust storms; and (3) strong, intermittent variance is observed at night in parts of the southern tropics during its fall/winter, but frequent CO2 ice clouds prevents unambiguous attribution to GW activity. The spatial distribution of wave activity is consistent with topographic sources being dominant, but contributions from boundary layer convection and other convective processes are possible.

3.
J Geophys Res Planets ; 124(11): 2863-2892, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32908808

RESUMEN

Dusty convection, convective activity powered by radiative heating of dust, is a ubiquitous phenomenon in Mars's atmosphere but is especially deep (that is, impactful on the middle atmosphere) and widespread during planet-encircling dust events (PEDE) that occur every few Mars Years (MY). Yet the relative roles of dusty deep convection and global dynamics, such as the principal meridional overturning cell (PMOC) and the radiative tides, in dust storm development and the vertical transport of dust and water are still unclear. Here, observations from the Mars Climate Sounder on board Mars Reconnaissance Orbiter (MRO-MCS) are used to study dusty deep convection and its impact on middle atmospheric water content during the MY 34 PEDE (commenced June 2018). Additional context is provided by MRO-MCS observations of the MY 28 PEDE (commenced June 2007). This investigation establishes that a few, localized centers of dusty deep convection in the tropics formed in the initial phases of both PEDE simultaneously with a substantial increase in middle atmospheric water content. The growth phase of the MY 34 PEDE was defined by episodic outbreaks of deep convection along the Acidalia and Utopia storm tracks as opposed to less episodic, more longitudinally distributed convective activity during the MY 28 PEDE. The most intense convection during both PEDE was observed in southern/eastern Tharsis, where MRO-MCS observed multiple instances of deep convective clouds transporting dust to altitudes of 70-90 km. These results suggest that Martian PEDE typically contain multiple convectively active mesoscale weather systems.

4.
J Atmos Sci ; 76(11): 3299-3326, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32848258

RESUMEN

Deep convection, as used in meteorology, refers to the rapid ascent of air parcels in the Earth's troposphere driven by the buoyancy generated by phase change in water. Deep convection undergirds some of the Earth's most important and violent weather phenomena and is responsible for many aspects of the observed distribution of energy, momentum, and constituents (particularly water) in the Earth's atmosphere. Deep convection driven by buoyancy generated by the radiative heating of atmospheric dust may be similarly important in the atmosphere of Mars but lacks a systematic description. Here we propose a comprehensive framework for this phenomenon of dusty deep convection (DDC) that is supported by energetic calculations and observations of the vertical dust distribution and exemplary dusty deep convective structures within local, regional, and global dust storm activity. In this framework, DDC is distinct from a spectrum of weaker dusty convective activity because DDC originates from pre-existing or concurrently forming mesoscale circulations that generate high surface dust fluxes, oppose large-scale horizontal advective-diffusive processes, and are thus able to maintain higher dust concentrations than typically simulated. DDC takes two distinctive forms. Mesoscale circulations that form near Mars's highest volcanoes in dust storms of all scales can transport dust to the base of the upper atmosphere in as little as two hours. In the second distinctive form, mesoscale circulations at low elevations within regional and global dust storm activity generate freely convecting streamers of dust that are sheared into the middle atmosphere over the diurnal cycle.

5.
Science ; 333(6051): 1832-3, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21960617

Asunto(s)
Marte , Vapor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA