Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Toxicol Appl Pharmacol ; 394: 114961, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209365

RESUMEN

INTRODUCTION: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. METHODS: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. RESULTS: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. DISCUSSION: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.


Asunto(s)
Canal de Potasio ERG1/antagonistas & inhibidores , Medición de Riesgo/métodos , Torsades de Pointes/inducido químicamente , Teorema de Bayes , Simulación por Computador , Humanos , Modelos Biológicos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Seguridad , Torsades de Pointes/fisiopatología
2.
Planta Med ; 85(11-12): 925-933, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31127604

RESUMEN

A fluorometric imaging plate reader (FLIPR) assay utilizing Chinese hamster ovary (CHO) cells stably transfected with GABAA receptors of α 1 ß 2 γ 2 subunit composition was evaluated and validated for rapid screening of plant extract libraries and efficient localization of active compounds in extracts. Validation was performed with pure compounds and extracts known to contain allosteric GABAA receptor modulators. Plants extracts that had been previously reported as active in an assay using Xenopus laevis oocytes transiently expressing GABAA receptors of α 1 ß 2 γ 2 subunit composition were also active in the FLIPR assay. A protocol for HPLC-based activity profiling was developed, whereby separations of 0.4 - 1.2 mg of extracts on an analytical HPLC column were found to be sufficient for the sensitivity of the bioassay. The protocol successfully localized the activity of known GABAergic natural products, such as magnolol in Magnolia officinalis, valerenic acid in Valeriana officinalis, and piperine in Piper nigrum extract. EC50 values of compounds (magnolol: 4.81 ± 1.0 µM, valerenic acid: 12.56 ± 1.2 µM, and piperine: 5.76 ± 0.7 µM) were found to be comparable or lower than those reported using Xenopus oocyte assays.


Asunto(s)
Fluorometría/métodos , Extractos Vegetales/farmacología , Receptores de GABA-A/efectos de los fármacos , Alcaloides/farmacología , Animales , Benzodioxoles/farmacología , Bioensayo/métodos , Compuestos de Bifenilo/farmacología , Células CHO , Cromatografía Líquida de Alta Presión , Cricetulus , Indenos/farmacología , Lignanos/farmacología , Magnolia/química , Oocitos/metabolismo , Piper nigrum/química , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Sesquiterpenos/farmacología , Valeriana/química , Xenopus laevis
3.
Epilepsia ; 59(8): 1492-1506, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29953587

RESUMEN

OBJECTIVE: Pharmacoresistance is a problem affecting ∼30% of chronic epilepsy patients. An understanding of the mechanisms of pharmacoresistance requires a precise understanding of how antiepileptic drugs interact with their targets in control and epileptic tissue. Although the effects of (S)-licarbazepine (S-Lic) on sodium channel fast inactivation are well understood and have revealed maintained activity in epileptic tissue, it is not known how slow inactivation processes are affected by S-Lic in epilepsy. METHODS: We have used voltage clamp recordings in isolated dentate granule cells (DGCs) and cortical pyramidal neurons of control versus chronically epileptic rats (pilocarpine model of epilepsy) and in DGCs isolated from hippocampal specimens from temporal lobe epilepsy patients to examine S-Lic effects on sodium channel slow inactivation. RESULTS: S-Lic effects on entry into and recovery from slow inactivation were negligible, even at high concentrations of S-Lic (300 µmol/L). Much more pronounced S-Lic effects were observed on the voltage dependence of slow inactivation, with significant effects at 100 µmol/L S-Lic in DGCs from control and epileptic rats or temporal lobe epilepsy patients. For none of these effects of S-Lic could we observe significant differences either between sham-control and epileptic rats, or between human DGCs and the two animal groups. S-Lic was similarly effective in cortical pyramidal neurons from sham-control and epileptic rats. Finally, we show in expression systems that S-Lic effects on slow inactivation voltage dependence are only observed in Nav 1.2 and Nav 1.6 subunits, but not in Nav 1.1 and Nav 1.3 subunits. SIGNIFICANCE: From these data, we conclude that a major mechanism of action of S-Lic is an effect on slow inactivation, primarily through effects on slow inactivation voltage dependence of Nav 1.2 and Nav 1.6 channels. Second, we demonstrate that this main effect of S-Lic is maintained in both experimental and human epilepsy and applies to principal neurons of different brain areas.


Asunto(s)
Anticonvulsivantes/farmacología , Giro Dentado/patología , Dibenzazepinas/farmacología , Epilepsia/patología , Neuronas/efectos de los fármacos , Canales de Sodio/fisiología , Adulto , Análisis de Varianza , Animales , Anticonvulsivantes/uso terapéutico , Biofisica , Células Cultivadas , Dibenzazepinas/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Epilepsia/inducido químicamente , Femenino , Humanos , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Persona de Mediana Edad , Técnicas de Placa-Clamp , Pilocarpina/toxicidad , Ratas , Ratas Wistar
4.
Planta Med ; 82(13): 1192-201, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27420350

RESUMEN

Tryptanthrin and (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolinone (indolinone) were recently isolated from Isatis tinctoria as potent anti-inflammatory and antiallergic alkaloids, and shown to inhibit COX-2, 5-LOX catalyzed leukotriene synthesis, and mast cell degranulation at low µM to nM concentrations. To assess their suitability for oral administration, we screened the compounds in an in vitro intestinal permeability assay using human colonic adenocarcinoma cells. For exact quantification of the compounds, validated UPLC-MS/MS methods were used. Tryptanthrin displayed high permeability (apparent permeability coefficient > 32.0 × 10(-6) cm/s) across the cell monolayer. The efflux ratio below 2 (< 1.12) and unchanged apparent permeability coefficient values in the presence of the P-glycoprotein inhibitor verapamil (50 µM) indicated that tryptanthrin was not involved in P-glycoprotein interactions. For indolinone, a low recovery was found in the human colon adenocarcinoma cell assay. High-resolution mass spectrometry pointed to extensive phase II metabolism of indolinone (sulfation and glucuronidation). Possible cardiotoxic liability of the compounds was assessed in vitro by measurement of an inhibitory effect on human ether-a-go-go-related gene tail currents in stably transfected HEK 293 cells using the patch clamp technique. Low human ether-a-go-go-related gene inhibition was found for tryptanthrin (IC50 > 10 µM) and indolinone (IC50 of 24.96 µM). The analysis of compounds using various in silico methods confirmed favorable pharmacokinetic properties, as well as a slight inhibition of the human ether-a-go-go-related gene potassium channel at micromolar concentrations.


Asunto(s)
Antialérgicos/farmacocinética , Antiinflamatorios no Esteroideos/farmacocinética , Indoles/farmacocinética , Pirogalol/análogos & derivados , Quinazolinas/farmacocinética , Células CACO-2 , Permeabilidad de la Membrana Celular , Cromatografía Líquida de Alta Presión/métodos , Células HEK293 , Humanos , Absorción Intestinal , Isatis/química , Pirogalol/farmacocinética , Espectrometría de Masas en Tándem
6.
J Pharmacol Toxicol Methods ; 128: 107524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38852689

RESUMEN

BACKGROUND: Determination of a drug's potency in blocking the hERG channel is an established safety pharmacology study. Best practice guidelines have been published for reliable assessment of hERG potency. In addition, a set of plasma concentration and plasma protein binding fraction data were provided as denominators for margin calculations. The aims of the current analysis were five-fold: provide data allowing creation of consistent denominators for the hERG margin distributions of the key reference agents, explore the variation in hERG margins within and across laboratories, provide a hERG margin to 10 ms QTc prolongation based on several newer studies, provide information to use these analyses for reference purposes, and provide recommended hERG margin 'cut-off' values. METHODS: The analyses used 12 hERG IC50 'best practice' data sets (for the 3 reference agents). A group of 5 data sets came from a single laboratory. The other 7 data sets were collected by 6 different laboratories. RESULTS: The denominator exposure distributions were consistent with the ICH E14/S7B Training Materials. The inter-occasion and inter-laboratory variability in hERG IC50 values were comparable. Inter-drug differences were most important in determining the pooled margin variability. The combined data provided a robust hERG margin reference based on best practice guidelines and consistent exposure denominators. The sensitivity of hERG margin thresholds were consistent with the sensitivity described over the course of the last two decades. CONCLUSION: The current data provide further insight into the sensitivity of the 30-fold hERG margin 'cut-off' used for two decades. Using similar hERG assessments and these analyses, a future researcher can use a hERG margin threshold to support a negative QTc integrated risk assessment.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Síndrome de QT Prolongado , Humanos , Medición de Riesgo/métodos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Síndrome de QT Prolongado/inducido químicamente , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/metabolismo , Laboratorios/normas , Animales , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/efectos adversos , Concentración 50 Inhibidora
7.
Toxicol Sci ; 201(2): 321-330, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38976647

RESUMEN

Quinoline-related antimalarial drugs have been associated with cardiotoxicity risk, in particular QT prolongation and QRS complex widening. In collaboration with Medicines for Malaria Venture, we discovered novel plasmepsin X (PMX) inhibitors for malaria treatment. The first lead compounds tested in anesthetized guinea pigs (GPs) induced profound QRS widening, although exhibiting weak inhibition of NaV1.5-mediated currents in standard patch clamp assays. To understand the mechanism(s) underlying QRS widening to identify further compounds devoid of such liability, we established a set of in vitro models including CaV1.2, NaV1.5 rate-dependence, and NaV1.8 patch clamp assays, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), and Langendorff-perfused isolated GP hearts. Six compounds were tested in all models including anesthetized GP, and 8 additional compounds were tested in vitro only. All compounds tested in anesthetized GP and isolated hearts showed a similar cardiovascular profile, consisting of QRS widening, bradycardia, negative inotropy, hypotension, and for some, QT prolongation. However, a left shift of the concentration-response curves was noted from in vitro to in vivo GP data. When comparing in vitro models, there was a good consistency between decrease in sodium spike amplitude in hiPSC-CM and QRS widening in isolated hearts. Patch clamp assay results showed that the QRS widening observed with PMX inhibitors is likely multifactorial, primarily due to NaV1.8 and NaV1.5 rate-dependent sodium blockade and/or calcium channel-mediated mechanisms. In conclusion, early de-risking of QRS widening using a set of different in vitro assays allowed to identify novel PMX inhibitors with improved cardiac safety profile.


Asunto(s)
Antimaláricos , Ácido Aspártico Endopeptidasas , Cardiotoxicidad , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Cobayas , Antimaláricos/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Potenciales de Acción/efectos de los fármacos , Masculino , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Técnicas de Placa-Clamp , Electrocardiografía
8.
Nat Genet ; 33(4): 527-32, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12612585

RESUMEN

Idiopathic generalized epilepsy (IGE) is an inherited neurological disorder affecting about 0.4% of the world's population. Mutations in ten genes causing distinct forms of idiopathic epilepsy have been identified so far, but the genetic basis of many IGE subtypes is still unknown. Here we report a gene associated with the four most common IGE subtypes: childhood and juvenile absence epilepsy (CAE and JAE), juvenile myoclonic epilepsy (JME), and epilepsy with grand mal seizures on awakening (EGMA; ref. 8). We identified three different heterozygous mutations in the chloride-channel gene CLCN2 in three unrelated families with IGE. These mutations result in (i) a premature stop codon (M200fsX231), (ii) an atypical splicing (del74-117) and (iii) a single amino-acid substitution (G715E). All mutations produce functional alterations that provide distinct explanations for their pathogenic phenotypes. M200fsX231 and del74-117 cause a loss of function of ClC-2 channels and are expected to lower the transmembrane chloride gradient essential for GABAergic inhibition. G715E alters voltage-dependent gating, which may cause membrane depolarization and hyperexcitability.


Asunto(s)
Canales de Cloruro/genética , Epilepsia Generalizada/genética , Mutación , Adolescente , Adulto , Secuencia de Bases , Membrana Celular/metabolismo , Codón de Terminación , Análisis Mutacional de ADN , ADN Complementario/metabolismo , Electrofisiología , Salud de la Familia , Femenino , Heterocigoto , Humanos , Masculino , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Datos de Secuencia Molecular , Linaje , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
9.
Pharmacol Res Perspect ; 11(1): e01059, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36748725

RESUMEN

Levetiracetam (LEV), a well-established anti-seizure medication (ASM), was launched before the original ICH S7B nonclinical guidance assessing QT prolongation potential and the introduction of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm. No information was available on its effects on cardiac channels. The goal of this work was to "pressure test" the CiPA approach with LEV and check the concordance of nonclinical core and follow-up S7B assays with clinical and post-marketing data. The following experiments were conducted with LEV (0.25-7.5 mM): patch clamp assays on hERG (acute or trafficking effects), NaV 1.5, CaV 1.2, Kir 2.1, KV 7.1/mink, KV 1.5, KV 4.3, and HCN4; in silico electrophysiology modeling (Virtual Assay® software) in control, large-variability, and high-risk human ventricular cell populations; electrophysiology measurements in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and dog Purkinje fibers; ECG measurements in conscious telemetered dogs after single oral administration (150, 300, and 600 mg/kg). Except a slight inhibition (<10%) of hERG and KV 7.1/mink at 7.5 mM, that is, 30-fold the free therapeutic plasma concentration (FTPC) at 1500 mg, LEV did not affect any other cardiac channels or hERG trafficking. In both virtual and real human cardiomyocytes, and in dog Purkinje fibers, LEV induced no relevant changes in electrophysiological parameters or arrhythmia. No QTc prolongation was noted up to 2.7 mM unbound plasma levels in conscious dogs, corresponding to 10-fold the FTPC. Nonclinical assessment integrating CiPA assays shows the absence of QT prolongation and proarrhythmic risk of LEV up to at least 10-fold the FTPC and the good concordance with clinical and postmarketing data, although this does not exclude very rare occurrence of QT prolongation cases in patients with underlying risk factors.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Animales , Perros , Humanos , Levetiracetam/farmacología , Miocitos Cardíacos
10.
Pharmacol Rep ; 74(5): 956-968, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36097257

RESUMEN

BACKGROUND: Anxiolytic benzodiazepines, due to their clinical effectiveness, are one of the most prescribed drugs worldwide, despite being associated with sedative effects and impaired psychomotor and cognitive performance. Not every GABAA receptor functions in the same manner. Those containing α1 subunits are associated with sleep regulation and have a greater effect on the sedative-hypnotic benzodiazepines, whereas those containing α2 and/or α3 subunits are associated with anxiety phenomena and have a greater effect on the anxiolytic benzodiazepines. Therefore, characterization of the selectivity profile of anxiolytic drugs could translate into a significant clinical impact. METHODS: The present study pharmacodynamically evaluated chlornordiazepam, the main active metabolite of mexazolam, upon GABAA receptors containing α2 and/or α3, anxiety-related, and those containing an α1 subunit, associated with sleep modulation. RESULTS: As shown by whole-cell patch-clamp data, chlornordiazepam potentiated GABA-evoked current amplitude in α2 and α3 containing receptors without changing the current amplitude in α1 containing receptors. However, current decay time increased, particularly in GABAA receptors containing α1 subunits. In contrast, other anxiolytic benzodiazepines such as alprazolam, bromazepam, and zolpidem, all increased currents associated with GABAA receptors containing the α1 subunit. CONCLUSIONS: This novel evidence demonstrates that mexazolam (through its main metabolite chlornordiazepam) has a "pharmacodynamic fingerprint" that correlates better with an anxiolytic profile and fewer sedative effects, when compared to alprazolam, bromazepam and zolpidem, explaining clinical trial outcomes with these drugs. This also highlights the relevance of the pharmacological selectivity over GABAA receptor subtypes in the selection of benzodiazepines, in addition to their clinical performance and pharmacokinetic characteristics.


Asunto(s)
Ansiolíticos , Bromazepam , Receptores de GABA-A/metabolismo , Zolpidem , Alprazolam/farmacología , Ansiolíticos/farmacología , Bromazepam/farmacología , Benzodiazepinas/farmacología , Hipnóticos y Sedantes/farmacología , Ácido gamma-Aminobutírico
11.
Clin Transl Sci ; 14(3): 1133-1146, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33620150

RESUMEN

We applied a set of in silico and in vitro assays, compliant with the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm, to assess the risk of chloroquine (CLQ) or hydroxychloroquine (OH-CLQ)-mediated QT prolongation and Torsades de Pointes (TdP), alone and combined with erythromycin (ERT) and azithromycin (AZI), drugs repurposed during the first wave of coronavirus disease 2019 (COVID-19). Each drug or drug combination was tested in patch clamp assays on seven cardiac ion channels, in in silico models of human ventricular electrophysiology (Virtual Assay) using control (healthy) or high-risk cell populations, and in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. In each assay, concentration-response curves encompassing and exceeding therapeutic free plasma levels were generated. Both CLQ and OH-CLQ showed blocking activity against some potassium, sodium, and calcium currents. CLQ and OH-CLQ inhibited IKr (half-maximal inhibitory concentration [IC50 ]: 1 µM and 3-7 µM, respectively) and IK1 currents (IC50 : 5 and 44 µM, respectively). When combining OH-CLQ with AZI, no synergistic effects were observed. The two macrolides had no or very weak effects on the ion currents (IC50  > 300-1000 µM). Using Virtual Assay, both antimalarials affected several TdP indicators, CLQ being more potent than OH-CLQ. Effects were more pronounced in the high-risk cell population. In hiPSC-derived cardiomyocytes, all drugs showed early after-depolarizations, except AZI. Combining CLQ or OH-CLQ with a macrolide did not aggravate their effects. In conclusion, our integrated nonclinical CiPA dataset confirmed that, at therapeutic plasma concentrations relevant for malaria or off-label use in COVID-19, CLQ and OH-CLQ use is associated with a proarrhythmia risk, which is higher in populations carrying predisposing factors but not worsened with macrolide combination.


Asunto(s)
Antimaláricos/efectos adversos , Arritmias Cardíacas/inducido químicamente , Tratamiento Farmacológico de COVID-19 , Cloroquina/efectos adversos , Hidroxicloroquina/efectos adversos , Uso Fuera de lo Indicado , SARS-CoV-2 , Animales , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Electrocardiografía/efectos de los fármacos , Humanos , Canales Iónicos/efectos de los fármacos
12.
J Pharmacol Toxicol Methods ; 104: 106874, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32446729

RESUMEN

INTRODUCTION: Several compounds from a neuroscience project induced convulsions in animals, at low exposure levels via a hypothetical off-target mechanism. A set of in vitro and in vivo experiments were conducted in order to 1) identify the mechanism behind convulsions; 2) characterize the convulsions, 3) detect premonitory signs that could be monitored clinically, and 4) assess the development of tolerance after repeat dosing. METHODS: Patch clamp assays were conducted on 12 different ion channels (e.g. sodium, potassium, calcium, AMPA, NMDA, GABAA and purinergic receptors) known to be associated with seizures, to identify the off-target culprit. A multiphase study was conducted with UCB-A and UCB-B in Beagle dogs telemetered for video EEG/EMG monitoring to further characterize the convulsive pattern. First, both compounds were administered by intravenous constant infusion (dose: 5 mg/kg/h) over 2 h. Thereafter, the same dogs received a daily oral administration of UCB-A (8 mg/kg/day) for 7 days. RESULTS: Compounds inducing convulsions showed strong inhibitory activity on GABAA channels (IC50 values <10 µM), whereas compounds with partial or no inhibitory effect on these channels did not induce seizures. In EEG experiments, convulsions were preceded by premonitory clinical signs (e.g. tremors, myoclonic jerks) and morphological EEG abnormalities (e.g. sharp waves, spike and wave patterns), confirming their CNS origin. No attenuation of the seizurogenic effects was observed over the 7-day treatment period. DISCUSSION: A well-designed set of experiments including electrophysiological assays on seizure-related ion channels and EEG/EMG assessment in telemetered dogs allowed a proper seizure liability risk assessment, leading to a rapid no go decision for the two most advanced leads.


Asunto(s)
Canales Iónicos/efectos de los fármacos , Medición de Riesgo/métodos , Convulsiones/inducido químicamente , Animales , Células CHO , Cricetulus , Perros , Electroencefalografía , Fenómenos Electrofisiológicos , Femenino , Células HEK293 , Humanos , Concentración 50 Inhibidora , Canales Iónicos/metabolismo , Plomo , Masculino , Ratones , Técnicas de Placa-Clamp , Ratas , Convulsiones/fisiopatología , Telemetría
13.
Sci Rep ; 10(1): 5627, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221320

RESUMEN

Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCav1.2 [L-Type ICa], peak hNav1.5, [Peak INa], late hNav1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNav1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNav1.5 blocking drugs. hERG and hNav1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.

15.
Neuropharmacology ; 89: 122-35, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25242737

RESUMEN

This study aimed at evaluating the effects of eslicarbazepine, carbamazepine (CBZ), oxcarbazepine (OXC) and lacosamide (LCM) on the fast and slow inactivated states of voltage-gated sodium channels (VGSC). The anti-epileptiform activity was evaluated in mouse isolated hippocampal slices. The anticonvulsant effects were evaluated in MES and the 6-Hz psychomotor tests. The whole-cell patch-clamp technique was used to investigate the effects of eslicarbazepine, CBZ, OXC and LCM on sodium channels endogenously expressed in N1E-115 mouse neuroblastoma cells. CBZ and eslicarbazepine exhibit similar concentration dependent suppression of epileptiform activity in hippocampal slices. In N1E-115 mouse neuroblastoma cells, at a concentration of 250 µM, the voltage dependence of the fast inactivation was not influenced by eslicarbazepine, whereas LCM, CBZ and OXC shifted the V0.5 value (mV) by -4.8, -12.0 and -16.6, respectively. Eslicarbazepine- and LCM-treated fast-inactivated channels recovered similarly to control conditions, whereas CBZ- and OXC-treated channels required longer pulses to recover. CBZ, eslicarbazepine and LCM shifted the voltage dependence of the slow inactivation (V0.5, mV) by -4.6, -31.2 and -53.3, respectively. For eslicarbazepine, LCM, CBZ and OXC, the affinity to the slow inactivated state was 5.9, 10.4, 1.7 and 1.8 times higher than to the channels in the resting state, respectively. In conclusion, eslicarbazepine did not share with CBZ and OXC the ability to alter fast inactivation of VGSC. Both eslicarbazepine and LCM reduce VGSC availability through enhancement of slow inactivation, but LCM demonstrated higher interaction with VGSC in the resting state and with fast inactivation gating.


Asunto(s)
Acetamidas/farmacología , Carbamazepina/análogos & derivados , Carbamazepina/farmacología , Dibenzazepinas/farmacología , Canales de Sodio Activados por Voltaje/fisiología , Animales , Anticonvulsivantes/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Lacosamida , Masculino , Ratones , Técnicas de Cultivo de Órganos , Oxcarbazepina , Factores de Tiempo
16.
Basic Clin Pharmacol Toxicol ; 112(2): 96-102, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22905852

RESUMEN

It has been recently reported that the essential antioxidant element selenium has protective effects on cytosolic Ca(2+) levels in cell lines. However, the effects of selenium on like transient receptor potential melastatin 2 (TRPM2) in response to oxidative stress (H(2) O(2) ) are not well understood. We investigated the effects of selenium on H(2) O(2) -induced TRPM2 channel currents in the Chinese hamster ovary (CHO) cell line using patch-clamp and fura-2 fluorescence imaging techniques.


Asunto(s)
Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Canales Catiónicos TRPM/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Colorantes Fluorescentes/metabolismo , Fura-2/metabolismo , Peróxido de Hidrógeno/farmacología , Técnicas de Placa-Clamp , Transfección
17.
Proc Natl Acad Sci U S A ; 103(30): 11411-6, 2006 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-16849430

RESUMEN

Barttin is an accessory subunit of a subgroup of ClC-type chloride channels expressed in renal and inner ear epithelia. In this study, we examined the effects of barttin on two ClC-K channel isoforms, rat ClC-K1 and human ClC-Kb, using heterologous expression, patch clamping, confocal imaging, and flow cytometry. In the absence of barttin, only a small percentage of rClC-K1 and hClC-Kb channels are inserted into the plasma membrane. Coexpression of barttin enhances surface membrane insertion and furthermore modifies permeation and gating of ClC-K channels. hClC-Kb channels are nonfunctional without barttin and require the coexpressed accessory subunit to become anion conducting. In contrast, rClC-K1 channels are active without barttin, but at the cost of reduced unitary conductance as well as altered voltage dependence of activation. We mapped the separate functions of barttin to structural domains by a deletion analysis. Whereas the transmembrane core is necessary and sufficient to promote ClC-K channel exit from the endoplasmic reticulum, a short cytoplasmic segment following the second transmembrane helix modifies the unitary conductance. The entire cytoplasmic carboxyl terminus affects the open probability of ClC-K channels. The multiple functions of barttin might be necessary for a tight adjustment of epithelial Cl(-) conductances to ensure a precise regulation of body salt content and endocochlear potential.


Asunto(s)
Canales de Cloruro/fisiología , Proteínas de la Membrana/fisiología , Línea Celular , Membrana Celular/metabolismo , Canales de Cloruro/química , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Humanos , Riñón/metabolismo , Modelos Biológicos , Mutación , Conformación Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína
18.
Biophys J ; 89(3): 1710-20, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15980168

RESUMEN

Mammalian ClC-type chloride channels have large cytoplasmic carboxy-terminal domains whose function is still insufficiently understood. We investigated the role of the distal part of the carboxy-terminus of the muscle isoform ClC-1 by constructing and functionally evaluating two truncation mutants, R894X and K875X. Truncated channels exhibit normal unitary conductances and anion selectivities but altered apparent anion binding affinities in the open and in the closed state. Since voltage-dependent gating is strictly coupled to ion permeation in ClC-1 channels, the changed pore properties result in different fast and slow gating. Full length and truncated channels also differed in methanethiosulphonate (MTS) modification rate constants of an engineered cysteine at position 231 near the selectivity filter. Our data demonstrate that the carboxy-terminus of ClC channels modifies the conformation of the outer pore vestibule.


Asunto(s)
Canales de Cloruro/química , Músculos/metabolismo , Animales , Aniones , Línea Celular , Cisteína/química , Cistina/química , ADN Complementario/metabolismo , Electrofisiología/métodos , Humanos , Indicadores y Reactivos/farmacología , Activación del Canal Iónico , Iones , Cinética , Sustancias Macromoleculares/química , Mesilatos/farmacología , Modelos Químicos , Mutación , Plásmidos/metabolismo , Conformación Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Factores de Tiempo
19.
Plant Physiol ; 139(1): 417-24, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16113216

RESUMEN

TPK1 (formerly KCO1) is the founding member of the family of two-pore domain K(+) channels in Arabidopsis (Arabidopsis thaliana), which originally was described following expression in Sf9 insect cells as a Ca(2+)- and voltage-dependent outwardly rectifying plasma membrane K(+) channel. In plants, this channel has been shown by green fluorescent protein fusion to localize to the vacuolar membrane, which led to speculations that the TPK1 gene product would be a component of the nonselective, Ca(2+) and voltage-dependent slow-vacuolar (SV) cation channel found in many plants species. Using yeast (Saccharomyces cerevisiae) as an expression system for TPK1, we show functional expression of the channel in the vacuolar membrane. In isolated vacuoles of yeast yvc1 disruption mutants, the TPK1 gene product shows ion channel activity with some characteristics very similar to the SV-type channel. The open channel conductance of TPK1 in symmetrically 100 mM KCl is slightly asymmetric with roughly 40 pS at positive membrane voltages and 75 pS at negative voltages. Similar to the SV-type channel, TPK1 is activated by cytosolic Ca(2+), requiring micromolar concentration for activation. However, in contrast to the SV-type channel, TPK1 exhibits strong selectivity for K(+) over Na(+), and its activity turned out to be independent of the membrane voltage over the range of +/-80 mV. Our data clearly demonstrate that TPK1 is a voltage-independent, Ca(2+)-activated, K(+)-selective ion channel in the vacuolar membrane that does not mediate SV-type ionic currents.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Señalización del Calcio , Conductividad Eléctrica , Expresión Génica , Membranas Intracelulares/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética
20.
J Biol Chem ; 279(13): 13140-7, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-14718533

RESUMEN

The human muscle chloride channel ClC-1 has a 398-amino acid carboxyl-terminal domain that resides in the cytoplasm and contains two CBS (cystathionine-beta-synthase) domains. To examine the role of this region, we studied various carboxyl-terminal truncations by heterologous expression in mammalian cells, whole-cell patch clamp recording, and confocal imaging. Channel constructs lacking parts of the distal CBS domain, CBS2, did not produce functional channels, whereas deletion of CBS1 was tolerated. ClC channels are dimeric proteins with two ion conduction pathways (protopores). In heterodimeric channels consisting of one wild type subunit and one subunit in which the carboxyl terminus was completely deleted, only the wild type protopore was functional, indicating that the carboxyl terminus supports the function of the protopore. All carboxyl-terminal-truncated mutant channels fused to yellow fluorescent protein were translated and the majority inserted into the plasma membrane as revealed by confocal microscopy. Fusion proteins of cyan fluorescent protein linked to various fragments of the carboxyl terminus formed soluble proteins that could be redistributed to the surface membrane through binding to certain truncated channel subunits. Stable binding only occurs between carboxyl-terminal fragments of a single subunit, not between carboxyl termini of different subunits and not between carboxyl-terminal and transmembrane domains. However, an interaction with transmembrane domains can modify the binding properties of particular carboxyl-terminal proteins. Our results demonstrate that the carboxyl terminus of ClC-1 is not necessary for intracellular trafficking but is critical for channel function. Carboxyl termini fold independently and modify individual protopores of the double-barreled channel.


Asunto(s)
Canales de Cloruro/química , Animales , Línea Celular , Electrofisiología , Eliminación de Gen , Proteínas Fluorescentes Verdes , Humanos , Iones , Proteínas Luminiscentes/química , Microscopía Confocal , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Mutación , Técnicas de Placa-Clamp , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA