Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Ther Oncol ; 32(3): 200861, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39328291

RESUMEN

High-grade gliomas (HGGs) and glioblastomas (GBMs) are the most aggressive and lethal brain tumors. The current standard of care (SOC) includes gross safe surgical resection followed by chemoradiotherapy. The main chemotherapeutic agents are the DNA-alkylating agent temozolomide (TMZ) and adjuvants. Due to the outdated therapeutic protocols and lack of specific treatments, there is an urgent and rising need to improve our understanding of tumor biology and design more effective therapeutic strategies. In vitro models are essential for investigating glioma biology and testing novel therapeutic approaches. While using commercially available and patient-derived glioma cell lines for in vitro studies is common practice, they exhibit several limitations, including failing to maintain the genetic and phenotypic diversity of primary tumors, undergo genetic drift over time, and often lacking the invasive and stem-like characteristics of patient tumors. These limitations can lead to inconsistent and non-reproducible results, hampering translational research progress. In this study, we established a novel primary murine HGG cell line, isolated from an immunocompetent HGG-bearing RCAS/T-va mouse. We characterized the transcriptome and phenotype to ensure that this cell line resembles the nature of HGGs and retains the ability to reprogram primary murine T lymphocytes.

2.
Front Immunol ; 15: 1375413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895115

RESUMEN

Introduction: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with unacceptably low cure rates occurring often in patients with neurofibromatosis 1 defects. To investigate oncolytic Herpes Simplex Virus (oHSV) as an immunotherapeutic approach, we compared viral replication, functional activity, and immune response between unarmed and interleukin 12 (IL-12)-armed oncolytic viruses in virus-permissive (B109) and -resistant (67C-4) murine MPNSTs. Methods: This study compared two attenuated IL-12-oHSVs with γ134.5 gene deletions (Δγ134.5) and the same transgene expression cassette. The primary difference in the IL-12-oHSVs was in their ability to counter the translational arrest response in infected cells. Unlike M002 (Δγ134.5, mIL-12), C002 (Δγ134.5, mIL-12, IRS1) expresses an HCMV IRS1 gene and evades dsRNA activated translational arrest in infected cells. Results and discussion: Our results show that oHSV replication and gene expression results in vitro were not predictive of oHSV direct oncolytic activity in vivo. Tumors that supported viral replication in cell culture studies resisted viral replication by both oHSVs and restricted M002 transgene expression in vivo. Furthermore, two IL-12-oHSVs with equivalent transcriptional activity differed in IL-12 protein production in vivo, and the differences in IL-12 protein levels were reflected in immune infiltrate activity changes as well as tumor growth suppression differences between the IL-12-oHSVs. C002-treated tumors exhibited sustained IL-12 production with improved dendritic cells, monocyte-macrophage activity (MHCII, CD80/CD86 upregulation) and a polyfunctional Th1-cell response in the tumor infiltrates. Conclusion: These results suggest that transgene protein production differences between oHSVs in vivo, in addition to replication differences, can impact OV-therapeutic activity.


Asunto(s)
Interleucina-12 , Viroterapia Oncolítica , Virus Oncolíticos , Transgenes , Replicación Viral , Animales , Interleucina-12/genética , Interleucina-12/metabolismo , Ratones , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Línea Celular Tumoral , Inmunoterapia/métodos , Humanos , Simplexvirus/genética , Células Dendríticas/inmunología , Femenino
3.
Cell Rep ; 43(5): 114178, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38703364

RESUMEN

Innovative methods to retrieve proteins associated with actively replicating DNA have provided a glimpse into the molecular dynamics of replication fork stalling. We report that a combination of density-based replisome enrichment by isolating proteins on nascent DNA (iPOND2) and label-free quantitative mass spectrometry (iPOND2-DRIPPER) substantially increases both replication factor yields and the dynamic range of protein quantification. Replication protein abundance in retrieved nascent DNA is elevated up to 300-fold over post-replicative controls, and recruitment of replication stress factors upon fork stalling is observed at similar levels. The increased sensitivity of iPOND2-DRIPPER permits direct measurement of ubiquitination events without intervening retrieval of diglycine tryptic fragments of ubiquitin. Using this approach, we find that stalled replisomes stimulate the recruitment of a diverse cohort of DNA repair factors, including those associated with poly-K63-ubiquitination. Finally, we uncover the temporally controlled association of stalled replisomes with nuclear pore complex components and nuclear cytoskeleton networks.


Asunto(s)
Replicación del ADN , Ubiquitinación , Humanos , Reparación del ADN , ADN/metabolismo
4.
Mol Ther Oncolytics ; 30: 39-55, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37583388

RESUMEN

Oncolytic viruses, modified for tumor-restricted infection, are a promising cancer immunotherapeutic, yet much remains to be understood about factors driving their activity and outcome in the tumor microenvironment. Here, we report that oncolytic herpes simplex virus C134, previously found to exert T cell-dependent efficacy in mouse models of glioblastoma, exerts T cell-independent efficacy in mouse models of medulloblastoma, indicating this oncolytic virus uses different mechanisms in different tumors. We investigated C134's behavior in mouse medulloblastomas, using single cell RNA sequencing to map C134-induced gene expression changes across cell types, timepoints, and medulloblastoma subgroup models at whole-transcriptome resolution. Our work details substantial oncolytic virus-induced transcriptional remodeling of medulloblastoma-infiltrating immune cells, 10 subpopulations of monocytes and macrophages collectively demonstrating M1-like responses to C134, and suggests C134 be investigated as a potential new therapy for medulloblastoma.

5.
Nat Commun ; 12(1): 1626, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712616

RESUMEN

Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.


Asunto(s)
Alelos , Cardiomiopatías/genética , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/inmunología , Acortamiento del Telómero , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Células Asesinas Naturales
6.
Adv Med Educ Pract ; 11: 339-349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32494212

RESUMEN

PURPOSE: Early exposure and surgical mentorship can augment interest in surgery. We evaluate the effect and feasibility of offering education and mentorship opportunities in surgery to premedical students at our institution through an undergraduate surgery interest group (USIG). MATERIALS AND METHODS: We conducted a 1-year assessment of our USIG and reviewed its organizational structure, funding resources, media promotion, and educational activities. Our USIG hosted introductory-level surgical skills workshops, guest lectures by surgeons, and various facility tours. To assess participants' interests, as well as the influences on them to pursue a surgical profession, we analyzed pre- and post-event questionnaires. Similar questionnaires were completed by medical students in our medical student surgery interest group to compare any differences in perception between premedical and medical students. RESULTS: Our USIG currently has 378 undergraduate student members, with a higher proportion of women than in our medical student surgery interest group (P < 0.003). Neurosurgery was the most popular career choice among undergraduate participants. Participants reported the highest satisfaction with suturing and high-fidelity trauma surgery skills workshops. Undergraduate participants indicated that their intrinsic interest in the sciences is the highest motivation to pursue a surgical profession. Resident lifestyle and social obligations of a surgical career were actually positive influences for undergraduate participants; in contrast, medical students viewed those variables as negative factors. CONCLUSION: Our USIG was met with enthusiasm by premedical students and faculty alike. Participation strengthened premedical students' interest in pursuing surgery and increased their understanding of the surgical profession. Early mentorship may positively influence premedical students' perception of surgical careers. USIG is economically feasible and time-efficient; we encourage other academic institutions and educators to consider investing in similar interest groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA