Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Org Chem ; 83(21): 13498-13506, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30345758

RESUMEN

The reaction pathways of lithium 2,2,6,6-tetramethylpiperidide (LiTMP)-mediated deprotonative metalation of methoxy-substituted arenes were investigated. Importantly, it was experimentally observed that, whereas TMEDA has no effect on the course of the reactions, the presence of more than the stoichiometric amount of LiCl is deleterious, in particular without an in situ trap. These effects were corroborated by the DFT calculations. The reaction mechanisms, such as the structure of the active species in the deprotonation event, the reaction pathways by each postulated LiTMP complex, the stabilization effects by in situ trapping using zinc species, and some kinetic interpretation, are discussed herein.

2.
Beilstein J Org Chem ; 11: 1475-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26425204

RESUMEN

The synthesis of N-arylated pyrroles and indoles is documented, as well as their functionalization by deprotonative metallation using the base in situ prepared from LiTMP and ZnCl2·TMEDA (1/3 equiv). With N-phenylpyrrole and -indole, the reactions were carried out in hexane containing TMEDA which regioselectively afforded the 2-iodo derivatives after subsequent iodolysis. With pyrroles and indoles bearing N-substituents such as 2-thienyl, 3-pyridyl, 4-methoxyphenyl and 4-bromophenyl, the reactions all took place on the substituent, at the position either adjacent to the heteroatom (S, N) or ortho to the heteroatom-containing substituent (OMe, Br). The CH acidities of the substrates were determined in THF solution using the DFT B3LYP method in order to rationalize the experimental results.

3.
Bioorg Med Chem ; 22(13): 3498-507, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24831678

RESUMEN

Benzothiophene, benzofuran, benzothiazole and benzoxazole were deprotometalated using the lithium-zinc combination prepared from ZnCl2·TMEDA (TMEDA=N,N,N',N'-tetramethylethylenediamine, 1equiv) and lithium 2,2,6,6-tetramethylpiperidide (LiTMP, 3equiv). Subsequent interception of the 2-metalated derivatives using iodine as electrophile led to the iodides in 81%, 82%, 67% and 42% yields, respectively. These yields are higher (10% more) than those obtained using ZnCl2·TMEDA (0.5equiv) and LiTMP (1.5equiv), except in the case of benzoxazole (10% less). The crude iodides were involved in the N-arylation of pyrrole, indole, carbazole, pyrazole, indazole, imidazole and benzimidazole in the presence of Cu (0.2equiv) and Cs2CO3 (2equiv), and using acetonitrile as solvent (no other ligand) to provide after 24h reflux the expected N-arylated azoles in yields ranging from 33% to 81%. Using benzotriazole also led to N-arylation products, but in lower 34%, 39%, 36% and 6% yields, respectively. A further study with this azole evidenced the impact of 2,2,6,6-tetramethylpiperidine on the N-arylation yields. Most of the C,N'-linked bis-heterocycles thus synthesized (in particular those containing benzimidazole) induced a high growth inhibition of A2058 melanoma cells after a 72h treatment at 10(-5)M.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Heterocíclicos/farmacología , Yoduros/farmacología , Melanoma/tratamiento farmacológico , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Yoduros/química , Melanoma/patología , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Triazoles/química
4.
J Mol Model ; 30(1): 8, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091098

RESUMEN

CONTEXT: This work focuses on the study of six molecules composed of the TetraAmineLithium (TALi+) and TetraAmineSodium (TANa+) structures linked with the anions H-, Li- and Na-. The NLO results obtained by these calculations showed significant values of static first hyperpolarizabilities (ßtot) ranging from 8.74 * 10-30 to 691.99 * 10-30 esu. The two molecules TALi-Li and TALi-Na gave the highest values of static ßtot equal to 563.20 and 691.99 * 10-30 esu respectively and static second hyperpolarizabilities (γav) of 680.02 and 779.05 * 10-35 esu. The highest dynamic first hyperpolarizabilities (ß||) values are around 1474080.00 * 10-30 esu and 6,145,080.00 * 10-30 esu at 720 nm lasers and which are attributed to the two molecules TANa-Li and TANa-Na respectively. Four molecules have push-pull behavior where the anions are donor groups, the Li+-NH3 and Na+-NH3 groups are acceptor groups and a bridge composed by the three remaining NH3 ligands. The maximum wavelengths (λmax) in vacuum and in the presence of solvents for all molecules are in the range 240 to 870 nm. METHOD: The software used in this study is Gaussian 16. The optimizations of the molecules were calculated by B3LYP-D3/6-31 + + G(d,p). The static first hyperpolarizability (ßtot) was calculated by different functionals: CAM-B3LYP, LC-wPBE, LC-BLYP, M11, wB97X, HSEh1PBE and M06-2X and the MP2 method, the basis-set used is 6-31 + + G(d,p). Other calculations of static ßtot were carried out by the CAM-B3LYP functional combined with several basis-sets: 6-31G(d,p), 6-31 + + G(d,p), cc-pVDZ, AUG-cc- pVDZ, 6-311G(d,p), 6-311 + + G(d,p), cc-pVTZ and AUG-cc-pVTZ. The calculations of the first (ß||) and second (γ||) hyperpolarizabilities in second harmonic generation (SHG) were calculated by CAM-B3LYP/6-31 + + G(d,p). The delocalization energies (E(2)) were determined by the NBO approach and calculated by the same functional and basis-set cited before. The solvation Gibbs energies (ΔGsolv) were calculated using the implicit SMD model. Maximum wavelengths (λmax) and oscillator strengths ([Formula: see text]) were calculated by TD-CAM-B3LYP/6-31 + + G(d,p) in the presence of the implicit CPCM model.

5.
J Mol Model ; 29(12): 364, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945908

RESUMEN

CONTEXT: This article is based on the study of pyrrolic derivatives and their oligomers. Knowing that, pyrrolic derivatives are widely studied on an industrial scale. The aim of this work is to find pyrrolic derivatives having the same physicochemical characteristics such as the pyrrolic edifice. Six derivatives were studied by substituting the hydrogens in the ß position of the pyrroles with the following radicals: -CHO, -Cl, -CN, -NO, and -OH. The study was carried out theoretically using ab initio and density functional of theory (DFT) methods. In the first step, molecules of four units were taken into consideration in order to make the comparison between them. This comparison showed that the majority of molecules exhibited high intramolecular charge transfer (ICT) compared to the molecule composed of four pyrrolic units (OP4), and also exhibited strong nucleophilic and electrophilic characteristics. Natural bond orbital (NBO) analysis has shown continuous ICT mechanisms for certain molecules. The studied derivatives showed good solvation in several solvents compared to OP4. The molecules substituted by the radicals -CHO, -CN, -OH, and -NO generated several peaks in the excited states, which is the opposite case for the other molecules with a single peak. The effects of chain elongation revealed exponential equations generated by the two parameters energy gaps (ΔEH-L) and maximum wavelengths (λmax) as a function of the number of units (n). These equations were used to predict the maximum and minimum values of the above parameters for more elongated oligomers. METHOD: The software used to make the calculations is Gaussian 16. All geometries were calculated by B3LYP functional and 6-31++G(d,p) basis set. The electronic parameters ΔEH-L were calculated by the following functionals: B3LYP, CAM-B3LYP, LC-wPBE, LC-BLYP, wB97X, M062X, M06HF, and M11 in addition to the second-order Møller-Plesset method (MP2) while always keeping the basis set mentioned before. An effect of basis set variation was studied by the optimal functional in combination with the following basis sets: 6-31G(d,p), 6-31++G(d,p), cc-pVDZ, AUG-cc-pVDZ, 6-311G(d,p), 6-311++G(d,p), cc-pVTZ, and AUG-cc-pVTZ. The NBO study was carried out with the M06HF/6-31++G(d,p) functional using the NBO method. The solvation parameters were calculated by M06HF/6-31++G(d,p) in the presence of the implicit solvation model Solvation Model based on Density (SMD). The excited states were calculated by M06HF/6-31++G(d,p) by the implicit solvation model Conductor Polarizable Continuum Model (CPCM).

6.
Dalton Trans ; 45(14): 6094-104, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26554572

RESUMEN

The new area of lithio(thiocyanato)cuprates has been developed. Using inexpensive, stable and safe CuSCN for their preparation, these complexes revealed Lipshutz-type dimeric motifs with solvent-dependent point group identities; planar, boat-shaped and chair shaped conformers are seen in the solid state. In solution, both Lipshutz-type and Gilman structures are clearly seen. Since the advent in 2007 of directed ortho cupration, effort has gone into understanding the structure-reactivity effects of amide ligand variation in and alkali metal salt abstraction from Lipshutz-type cuprates such as (TMP)2Cu(CN)Li2(THF) 1 (TMP = 2,2,6,6-tetramethylpiperidide). The replacement of CN(-) with SCN(-) is investigated presently as a means of improving the safety of lithium cuprates. The synthesis and solid state structural characterization of reference cuprate (TMP)2Cu(CN)Li2(THP) 8 (THP = tetrahydropyran) precedes that of the thiocyanate series (TMP)2Cu(SCN)Li2(L) (L = OEt29, THF 10, THP 11). For each of 9-11, preformed TMPLi was combined with CuSCN (2 : 1) in the presence of sub-stoichiometric Lewis base (0.5 eq. wrt Li). The avoidance of Lewis basic solvents incurs formation of the unsolvated Gilman cuprate (TMP)2CuLi 12, whilst multidimensional NMR spectroscopy has evidenced the abstraction of LiSCN from 9-11 in hydrocarbon solution and the in situ formation of Gilman reagents. The synthetic utility of 10 is established in the selective deprotometalation of chloropyridine substrates, including effecting transition metal-free homocoupling in 51-69% yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA