Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 29(1): 56-70, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732991

RESUMEN

Levels of random genetic drift are influenced by demographic factors, such as mating system, sex ratio and age structure. The effective population size (Ne ) is a useful measure for quantifying genetic drift. Evaluating relative contributions of different demographic factors to Ne is therefore important to identify what makes a population vulnerable to loss of genetic variation. Until recently, models for estimating Ne have required many simplifying assumptions, making them unsuitable for this task. Here, using data from a small, harvested moose population, we demonstrate the use of a stochastic demographic framework allowing for fluctuations in both population size and age distribution to estimate and decompose the total demographic variance and hence the ratio of effective to total population size (Ne /N) into components originating from sex, age, survival and reproduction. We not only show which components contribute most to Ne /N currently, but also which components have the greatest potential for changing Ne /N. In this relatively long-lived polygynous system we show that Ne /N is most sensitive to the demographic variance of older males, and that both reproductive autocorrelations (i.e., a tendency for the same individuals to be successful several years in a row) and covariance between survival and reproduction contribute to decreasing Ne /N (increasing genetic drift). These conditions are common in nature and can be caused by common hunting strategies. Thus, the framework presented here has great potential to increase our understanding of the demographic processes that contribute to genetic drift and viability of populations, and to inform management decisions.


Asunto(s)
Ciervos/genética , Ecología , Flujo Genético , Reproducción , Animales , Ciervos/fisiología , Demografía , Femenino , Genética de Población , Masculino , Densidad de Población , Razón de Masculinidad
2.
J Anim Ecol ; 89(7): 1701-1710, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32220065

RESUMEN

Landscape changes are happening at an unprecedented pace, and together with high levels of wildlife harvesting humans have a large effect on wildlife populations. A thorough knowledge of their combined influence on individual fitness is important to understand factors affecting population dynamics. The goal of the study was to assess the individual consistency in the use of risky habitat types, and how habitat use was related to fitness components and life-history strategies. Using data from a closely monitored and harvested population of moose Alces alces, we examined how individual variation in offspring size, reproduction and survival was related to the use of open grasslands; a habitat type that offers high-quality forage during summer, but at the cost of being more exposed to hunters in autumn. The use of this habitat type may therefore involve a trade-off between high mortality risk and forage maximization. There was a high repeatability in habitat use, which suggests consistent behaviour within individuals. Offspring number and weight were positively related to the mothers' use of open grasslands, whereas the probability of surviving the subsequent harvest season was negatively related to the use of the same habitat type. As a consequence, we found a nonsignificant relationship between habitat use and lifetime fitness. The study suggests that harvesting, even if intended to be nonselective with regard to phenotypes, may be selective towards animals with specific behaviour and life-history strategies. As a consequence, harvesting can alter the life-history composition of the population and target life-history strategies that would be beneficial for individual fitness and population growth in the absence of hunting.


Asunto(s)
Ciervos , Animales , Ecosistema , Dinámica Poblacional , Reproducción , Estaciones del Año
3.
Oecologia ; 186(2): 447-458, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29197974

RESUMEN

Trade-offs between fitness-related traits are predicted from the principle of resource allocation, where increased fecundity or parental investment leads to reduced future reproduction or survival. However, fitness traits can also be positively correlated due to individual differences (e.g. body mass). Age at primiparity could potentially explain variation in individual fitness either because early primiparity is costly, or it may lead to higher lifetime reproductive success. Based on long-term monitoring and genetic parentage assignment of an island population of moose, we quantified reproductive performance and survival, and examined whether early maturing females have higher total calf production than late maturing females. We explored if harvesting of calves affected the subsequent reproductive success of their mothers, i.e. also due to a post-weaning cost of reproduction, and whether there are any intergenerational effects of female reproductive success. There was a positive relationship between current and future reproduction. The probability to reproduce was lower for females that were unsuccessful the year before, indicating a strong quality effect on productivity. Females that started to reproduce as 2-year olds had a slightly higher total calf production compared to those starting at age three or four. High-performing mothers were also correlated with daughters that performed well in terms of reproductive success. Our results suggest that the observed individual heterogeneity in fitness could be associated with differences in age at primiparity. This heterogeneity was not affected by reproductive costs associated with tending for a calf post-weaning.


Asunto(s)
Ciervos , Reproducción , Animales , Femenino , Fertilidad , Paridad , Embarazo , Destete
4.
Biol Lett ; 10(12): 20140786, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25540152

RESUMEN

Mechanisms reducing inbreeding are thought to have evolved owing to fitness costs of breeding with close relatives. In small and isolated populations, or populations with skewed age- or sex distributions, mate choice becomes limited, and inbreeding avoidance mechanisms ineffective. We used a unique individual-based dataset on moose from a small island in Norway to assess whether inbreeding avoidance was related to population structure and size, expecting inbreeding avoidance to be greater in years with larger populations and even adult sex ratios. The probability that a potential mating event was realized was negatively related to the inbreeding coefficient of the potential offspring, with a stronger relationship in years with a higher proportion or number of males in the population. Thus, adult sex ratio and population size affect the degree of inbreeding avoidance. Consequently, conservation managers should aim for sex ratios that facilitate inbreeding avoidance, especially in small and isolated populations.


Asunto(s)
Reacción de Prevención , Ciervos/fisiología , Animales , Endogamia , Noruega
5.
Am Nat ; 173(1): 89-104, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19072136

RESUMEN

In seasonal environments, timing of reproduction is an important fitness component. However, in ungulates, our understanding of this biological process is limited. Here we analyze how age and body mass affect spatiotemporal variation in timing of ovulation of 6,178 Norwegian moose. We introduced a parametric statistical model to obtain inferences about the seasonal timing of ovulation peak, the degree of synchrony among individuals, and the proportion of individuals that ovulate. These components showed much more spatiotemporal variation than previously reported. Young (primiparous) and old (> or =11.5 years of age) females ovulated later than prime-aged (2.5-10.5 years of age) females. In all age classes, ovulation was delayed with decreasing body mass. Ovulation rates were lower and more variable among primiparous females than among older females. Young females required higher body mass than older females did to ovulate. The body-mass-to-ovulation relationship varied with age, showed large regional variation, and differed among years within region. These results suggest that (1) environmental and population characteristics contribute to shape seasonal variation in the breeding pattern and (2) large regional variation exists in the size-dependent age at maturity in moose. Hence, the life-history trade-off between reproduction and body growth should differ regionally in moose.


Asunto(s)
Ciervos/fisiología , Modelos Biológicos , Ovulación , Estaciones del Año , Envejecimiento/fisiología , Animales , Tamaño Corporal , Femenino , Geografía , Modelos Estadísticos , Noruega
6.
Ecol Evol ; 3(12): 4230-42, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24324873

RESUMEN

Inbreeding can affect fitness-related traits at different life history stages and may interact with environmental variation to induce even larger effects. We used genetic parentage assignment based on 22 microsatellite loci to determine a 25 year long pedigree for a newly established island population of moose with 20-40 reproducing individuals annually. We used the pedigree to calculate individual inbreeding coefficients and examined for effects of individual inbreeding (f) and heterozygosity on fitness-related traits. We found negative effects of f on birth date, calf body mass and twinning rate. The relationship between f and calf body mass and twinning rate were found to be separate but weaker after accounting for birth date. We found no support for an inbreeding effect on the age-specific lifetime reproductive success of females. The influence of f on birth date was related to climatic conditions during the spring prior to birth, indicating that calves with a low f were born earlier after a cold spring than calves with high f. In years with a warm spring, calf f did not affect birth date. The results suggest that severe inbreeding in moose has both indirect effects on fitness through delayed birth and lower juvenile body mass, as well as separate direct effects, as there still was a significant relationship between f and twinning rate after accounting for birth date and body mass as calf. Consequently, severe inbreeding as found in the study population may have consequences for population growth and extinction risk.

7.
Oecologia ; 158(3): 485-98, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18830632

RESUMEN

Considerable work has been done on disentangling important factors determining early development in body size, yet our knowledge of the extent to which animals living under varying conditions can achieve catch-up growth for a bad start in life is limited. Here, we investigated how body mass at the age of 8 months influenced adult body mass in a moose Alces alces population living under excellent environmental conditions on the island of Vega in northern Norway. We also investigated if mother age and birth date effects on calf body mass persisted until adulthood. We show that neither males nor females were able to show compensatory growth before they reached adulthood, and that part of the variation in adult body mass may have been due to variation in mother age and date of birth. The pattern observed in males can be related to their growth strategy in relation to reproduction, while such results were not expected in females where size-dependent start of reproduction is likely to interact with body growth. We suggest that the good environmental conditions experienced on Vega led to females having small somatic costs of an early start of reproduction or that larger females were able to acquire more resources for growth than their smaller conspecifics. In both cases, females that postpone their first reproduction may not be able to achieve catch-up growth for their lower early body mass compared to females that start reproduction at an early age. Our results concur with previous studies indicating that compensatory growth is weak in moose, increasing the likelihood that variation in life history characters are also transferred between generations.


Asunto(s)
Tamaño Corporal , Ciervos/crecimiento & desarrollo , Edad Materna , Reproducción , Animales , Animales Recién Nacidos , Femenino , Masculino , Noruega
8.
Oecologia ; 154(2): 259-71, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17713790

RESUMEN

A general feature of the demography of large ungulates is that many demographic traits are dependent on female body mass at early ages. Thus, identifying the factors affecting body mass variation can give important mechanistic understanding of demographic processes. Here we relate individual variation in autumn and winter body mass of moose calves living at low density on an island in northern Norway to characteristics of their mother, and examine how these relationships are affected by annual variation in population density and climate. Body mass increased with increasing age of their mother, was lower for calves born late in the spring, decreased with litter size and was larger for males than for female calves. No residual effects of variation in density and climate were present after controlling for annual variation in mother age and calving date. The annual variation in adult female age structure and calving date explained a large part (71-75%) of the temporal variation in calf body mass. These results support the hypotheses that (a) body mass of moose calves are affected by qualities associated with mother age (e.g. body condition, calving date); and (b) populations living at low densities are partly buffered against temporal fluctuations in the environment.


Asunto(s)
Peso Corporal , Ciervos/fisiología , Edad Materna , Estaciones del Año , Factores de Edad , Animales , Femenino , Geografía , Funciones de Verosimilitud , Noruega , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA