Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 140(22): 6912-6920, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29746121

RESUMEN

A DNA reaction network is like a biological algorithm that can respond to "molecular input signals", such as biological molecules, while the artificial cell is like a microrobot whose function is powered by the encapsulated DNA reaction network. In this work, we describe the feasibility of using a DNA reaction network as the computational core of a protocell, which will perform an artificial immune response in a concise way to eliminate a mimicked pathogenic challenge. Such a DNA reaction network (RN)-powered protocell can realize the connection of logical computation and biological recognition due to the natural programmability and biological properties of DNA. Thus, the biological input molecules can be easily involved in the molecular computation and the computation process can be spatially isolated and protected by artificial bilayer membrane. We believe the strategy proposed in the current paper, i.e., using DNA RN to power artificial cells, will lay the groundwork for understanding the basic design principles of DNA algorithm-based nanodevices which will, in turn, inspire the construction of artificial cells, or protocells, that will find a place in future biomedical research.


Asunto(s)
Algoritmos , ADN/química , Simulación de Dinámica Molecular , ADN/síntesis química , ADN/aislamiento & purificación
2.
Cell Rep ; 30(10): 3583-3595.e5, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160558

RESUMEN

Muscle regeneration relies on the regulation of muscle stem cells (MuSCs) through paracrine signaling interactions. We analyzed muscle regeneration in mice using single-cell RNA sequencing (scRNA-seq) and generated over 34,000 single-cell transcriptomes spanning four time-points. We identified 15 distinct cell types including heterogenous populations of muscle stem and progenitor cells. We resolved a hierarchical map of these myogenic cells by trajectory inference and observed stage-specific regulatory programs within this continuum. Through ligand-receptor interaction analysis, we identified over 100 candidate regeneration-associated paracrine communication pairs between MuSCs and non-myogenic cells. We show that myogenic stem/progenitor cells exhibit heterogeneous expression of multiple Syndecan proteins in cycling myogenic cells, suggesting that Syndecans may coordinate myogenic fate regulation. We performed ligand stimulation in vitro and confirmed that three paracrine factors (FGF2, TGFß1, and RSPO3) regulate myogenic cell proliferation in a Syndecan-dependent manner. Our study provides a scRNA-seq reference resource to investigate cell communication interactions in muscle regeneration.


Asunto(s)
Comunicación Celular , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Regeneración , Transducción de Señal , Análisis de la Célula Individual , Células Madre/metabolismo , Adipogénesis/genética , Animales , Proliferación Celular , Regulación de la Expresión Génica , Ligandos , Ratones Endogámicos C57BL , Modelos Biológicos , Desarrollo de Músculos/genética , Comunicación Paracrina , RNA-Seq , Receptores de Superficie Celular/metabolismo , Sindecanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA