Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619085

RESUMEN

Anthropogenic climate change profoundly alters the ocean's environmental conditions, which, in turn, impact marine ecosystems. Some of these changes are happening fast and may be difficult to reverse. The identification and monitoring of such changes, which also includes tipping points, is an ongoing and emerging research effort. Prevention of negative impacts requires mitigation efforts based on feasible research-based pathways. Climate-induced tipping points are traditionally associated with singular catastrophic events (relative to natural variations) of dramatic negative impact. High-probability high-impact ocean tipping points due to warming, ocean acidification, and deoxygenation may be more fragmented both regionally and in time but add up to global dimensions. These tipping points in combination with gradual changes need to be addressed as seriously as singular catastrophic events in order to prevent the cumulative and often compounding negative societal and Earth system impacts.


Asunto(s)
Ecosistema , Océanos y Mares , Cambio Climático , Planeta Tierra
2.
Materials (Basel) ; 16(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687610

RESUMEN

Components manufactured with Metal Laser Powder Bed Fusion (PBF-LB/M) are built in a layerwise fashion. The PBF-LB/M build orientation affects grain morphology and orientation. Depending on the build orientation, microstructures from equiaxed to textured grains can develop. In the case of a textured microstructure, a clear anisotropy of the mechanical properties affecting short- and long-term mechanical properties can be observed, which must be considered in the component design. Within the scope of this study, the IN738LC tensile and creep properties of PBF-LB/M samples manufactured in 0° (perpendicular to build direction), 45° and 90° (parallel to build direction) build orientations were investigated. While the hot tensile results (at 850 °C) are as expected, where the tensile properties of the 45° build orientation lay between those of 0° and 90°, the creep results (performed at 850 °C and 200 MPa) of the 45° build orientation show the least time to rupture. This study discusses the microstructural reasoning behind the peculiar creep behavior of 45° oriented IN738LC samples and correlates the results to heat-treated microstructures and the solidification conditions of the PBF-LB/M process itself.

3.
J Clin Invest ; 124(2): 675-86, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24401273

RESUMEN

High blood pressure is the leading risk factor for death worldwide. One of the hallmarks is a rise of peripheral vascular resistance, which largely depends on arteriole tone. Ca2+-activated chloride currents (CaCCs) in vascular smooth muscle cells (VSMCs) are candidates for increasing vascular contractility. We analyzed the vascular tree and identified substantial CaCCs in VSMCs of the aorta and carotid arteries. CaCCs were small or absent in VSMCs of medium-sized vessels such as mesenteric arteries and larger retinal arterioles. In small vessels of the retina, brain, and skeletal muscle, where contractile intermediate cells or pericytes gradually replace VSMCs, CaCCs were particularly large. Targeted disruption of the calcium-activated chloride channel TMEM16A, also known as ANO1, in VSMCs, intermediate cells, and pericytes eliminated CaCCs in all vessels studied. Mice lacking vascular TMEM16A had lower systemic blood pressure and a decreased hypertensive response following vasoconstrictor treatment. There was no difference in contractility of medium-sized mesenteric arteries; however, responsiveness of the aorta and small retinal arterioles to the vasoconstriction-inducing drug U46619 was reduced. TMEM16A also was required for peripheral blood vessel contractility, as the response to U46619 was attenuated in isolated perfused hind limbs from mutant mice. Out data suggest that TMEM16A plays a general role in arteriolar and capillary blood flow and is a promising target for the treatment of hypertension.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Canales de Cloruro/metabolismo , Hipertensión/fisiopatología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Animales , Anoctamina-1 , Arteriolas/patología , Presión Sanguínea/fisiología , Encéfalo/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Electrofisiología , Antagonistas de Estrógenos/farmacología , Células HEK293 , Humanos , Hipertensión/tratamiento farmacológico , Potenciales de la Membrana/efectos de los fármacos , Arterias Mesentéricas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Proteínas de Neoplasias/metabolismo , Pericitos/metabolismo , Retina/metabolismo , Tamoxifeno/farmacología , Factores de Tiempo , Resistencia Vascular , Vasoconstrictores/farmacología
4.
Science ; 326(5958): 1391-3, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19965756

RESUMEN

The oceans are a major sink for atmospheric carbon dioxide (CO2). Historically, observations have been too sparse to allow accurate tracking of changes in rates of CO2 uptake over ocean basins, so little is known about how these vary. Here, we show observations indicating substantial variability in the CO2 uptake by the North Atlantic on time scales of a few years. Further, we use measurements from a coordinated network of instrumented commercial ships to define the annual flux into the North Atlantic, for the year 2005, to a precision of about 10%. This approach offers the prospect of accurately monitoring the changing ocean CO2 sink for those ocean basins that are well covered by shipping routes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA