Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 18(4): 642-656, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30630936

RESUMEN

High-density peptide arrays are an excellent means to profile anti-plasmodial antibody responses. Different protein intrinsic epitopes can be distinguished, and additional insights are gained, when compared with assays involving the full-length protein. Distinct reactivities to specific epitopes within one protein may explain differences in published results, regarding immunity or susceptibility to malaria. We pursued three approaches to find specific epitopes within important plasmodial proteins, (1) twelve leading vaccine candidates were mapped as overlapping 15-mer peptides, (2) a bioinformatical approach served to predict immunogenic malaria epitopes which were subsequently validated in the assay, and (3) randomly selected peptides from the malaria proteome were screened as a control. Several peptide array replicas were prepared, employing particle-based laser printing, and were used to screen 27 serum samples from a malaria-endemic area in Burkina Faso, West Africa. The immunological status of the individuals was classified as "protected" or "unprotected" based on clinical symptoms, parasite density, and age. The vaccine candidate screening approach resulted in significant hits in all twelve proteins and allowed us (1) to verify many known immunogenic structures, (2) to map B-cell epitopes across the entire sequence of each antigen and (3) to uncover novel immunogenic epitopes. Predicting immunogenic regions in the proteome of the human malaria parasite Plasmodium falciparum, via the bioinformatics approach and subsequent array screening, confirmed known immunogenic sequences, such as in the leading malaria vaccine candidate CSP and discovered immunogenic epitopes derived from hypothetical or unknown proteins.


Asunto(s)
Epítopos de Linfocito B/inmunología , Malaria/inmunología , Péptidos/metabolismo , Análisis por Matrices de Proteínas , Adolescente , Adulto , Anticuerpos Antiprotozoarios/inmunología , Automatización , Estudios de Casos y Controles , Niño , Análisis por Conglomerados , Femenino , Humanos , Inmunidad Humoral , Lactante , Malaria/sangre , Vacunas contra la Malaria/inmunología , Masculino , Persona de Mediana Edad , Biblioteca de Péptidos , Plasmodium falciparum/inmunología , Adulto Joven
2.
J Proteome Res ; 19(11): 4339-4354, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32892628

RESUMEN

Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.


Asunto(s)
Enfermedades Transmisibles , Mapeo Epitopo , Epítopos , Pandemias , Análisis por Matrices de Proteínas/métodos , Betacoronavirus , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Enfermedades Transmisibles/inmunología , Enfermedades Transmisibles/terapia , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Epítopos/química , Epítopos/inmunología , Ensayos Analíticos de Alto Rendimiento , Humanos , SARS-CoV-2 , Factores de Tiempo
3.
Cell Microbiol ; 21(10): e13088, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31364224

RESUMEN

Intracellular Plasmodium parasites develop inside a parasitophorous vacuole (PV), a specialised compartment enclosed by a membrane (PVM) that contains proteins of both host and parasite origin. Although exported protein 1 (EXP1) is one of the earliest described parasitic PVM proteins, its function throughout the Plasmodium life cycle remains insufficiently understood. Here, we show that whereas the N-terminus of Plasmodium berghei EXP1 (PbEXP1) is essential for parasite survival in the blood, parasites lacking PbEXP1's entire C-terminal (CT) domain replicate normally in the blood but cause less severe pathology than their wild-type counterparts. Moreover, truncation of PbEXP1's CT domain not only impairs parasite development in the mosquito but also abrogates PbEXP1 localization to the PVM of intrahepatic parasites, severely limiting their replication and preventing their egress into the blood. Our findings highlight the importance of EXP1 during the Plasmodium life cycle and identify this protein as a promising target for antiplasmodial intervention.


Asunto(s)
Culicidae/parasitología , Hígado/parasitología , Plasmodium berghei/genética , Dominios Proteicos/genética , Proteínas Protozoarias/genética , Animales , Línea Celular Tumoral , Eritrocitos/parasitología , Femenino , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/parasitología , Estadios del Ciclo de Vida/genética , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/metabolismo , Vacuolas/metabolismo , Vacuolas/parasitología
4.
Amino Acids ; 52(5): 693-710, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32367435

RESUMEN

In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2-5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.


Asunto(s)
Apoptosis , Malaria/patología , Miocitos Cardíacos/patología , Parasitemia/patología , Factores de Iniciación de Péptidos/metabolismo , Plasmodium berghei/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Animales , Preescolar , Femenino , Humanos , Lactante , Malaria/metabolismo , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/parasitología , Parasitemia/metabolismo , Parasitemia/parasitología , Factores de Iniciación de Péptidos/genética , Proteínas de Unión al ARN/genética , Factor 5A Eucariótico de Iniciación de Traducción
5.
Proc Natl Acad Sci U S A ; 114(7): E1138-E1147, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137845

RESUMEN

The first, obligatory replication phase of malaria parasite infections is characterized by rapid expansion and differentiation of single parasites in liver cells, resulting in the formation and release of thousands of invasive merozoites into the bloodstream. Hepatic Plasmodium development occurs inside a specialized membranous compartment termed the parasitophorous vacuole (PV). Here, we show that, during the parasite's hepatic replication, the C-terminal region of the parasitic PV membrane protein exported protein 1 (EXP-1) binds to host Apolipoprotein H (ApoH) and that this molecular interaction plays a pivotal role for successful Plasmodium liver-stage development. Expression of a truncated EXP-1 protein, missing the specific ApoH interaction site, or down-regulation of ApoH expression in either hepatic cells or mouse livers by RNA interference resulted in impaired intrahepatic development. Furthermore, infection of mice with sporozoites expressing a truncated version of EXP-1 resulted in both a significant reduction of liver burden and delayed blood-stage patency, leading to a disease outcome different from that generally induced by infection with wild-type parasites. This study identifies a host-parasite protein interaction during the hepatic stage of infection by Plasmodium parasites. The identification of such vital interactions may hold potential toward the development of novel malaria prevention strategies.


Asunto(s)
Hígado/parasitología , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , beta 2 Glicoproteína I/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Regulación hacia Abajo , Genes Protozoarios , Células HEK293 , Hepatocitos/parasitología , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/genética , Eliminación de Secuencia , Esporozoítos/fisiología , Vacuolas/parasitología , beta 2 Glicoproteína I/antagonistas & inhibidores , beta 2 Glicoproteína I/genética
6.
PLoS Pathog ; 12(7): e1005710, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27409081

RESUMEN

Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Malaria/parasitología , Proteínas de Microfilamentos/metabolismo , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo , Animales , Western Blotting , Culicidae/microbiología , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Insectos Vectores/microbiología , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/patogenicidad , Proteínas Protozoarias/metabolismo , Transfección
7.
Int J Med Microbiol ; 308(1): 107-117, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28964681

RESUMEN

The intracellular development and differentiation of the Plasmodium parasite in the host liver is a prerequisite for the actual onset of malaria disease pathology. Since liver-stage infection is clinically silent and can be completely eliminated by sterilizing immune responses, it is a promising target for urgently needed innovative antimalarial drugs and/or vaccines. Discovered more than 65 years ago, these stages remain poorly understood regarding their molecular repertoire and interaction with their host cells in comparison to the pathogenic erythrocytic stages. The differentiating and replicative intrahepatic parasite resides in a membranous compartment called the parasitophorous vacuole, separating it from the host-cell cytoplasm. Here we outline seminal work that contributed to our present understanding of the fundamental dynamic cellular processes of the intrahepatic malarial parasite with both specific host-cell factors and compartments.


Asunto(s)
Interacciones Huésped-Parásitos , Hígado/parasitología , Plasmodium/crecimiento & desarrollo , Vacuolas/parasitología , Animales , Hepatocitos/metabolismo , Hepatocitos/parasitología , Humanos , Membranas Intracelulares/metabolismo , Malaria/parasitología , Plasmodium/metabolismo , Proteínas Protozoarias/metabolismo , Vacuolas/metabolismo
8.
J Immunol ; 194(10): 4860-70, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25862814

RESUMEN

Cerebral malaria is one of the most severe complications of malaria disease, attributed to a complicated series of immune reactions in the host. The syndrome is marked by inflammatory immune responses, margination of leukocytes, and parasitized erythrocytes in cerebral vessels leading to breakdown of the blood-brain barrier. We show that chemical attenuation of the parasite at the very early, clinically silent liver stage suppresses parasite development, delays the time until parasites establish blood-stage infection, and provokes an altered host immune response, modifying immunopathogenesis and protecting from cerebral disease. The early response is proinflammatory and cell mediated, with increased T cell activation in the liver and spleen, and greater numbers of effector T cells, cytokine-secreting T cells, and proliferating, proinflammatory cytokine-producing T cells. Dendritic cell numbers, T cell activation, and infiltration of CD8(+) T cells to the brain are decreased later in infection, possibly mediated by the anti-inflammatory cytokine IL-10. Strikingly, protection can be transferred to naive animals by adoptive transfer of lymphocytes from the spleen at very early times of infection. Our data suggest that a subpopulation belonging to CD8(+) T cells as early as day 2 postinfection is responsible for protection. These data indicate that liver stage-directed early immune responses can moderate the overall downstream host immune response and modulate severe malaria outcome.


Asunto(s)
Hígado/inmunología , Hígado/virología , Malaria/inmunología , Malaria/patología , Aminoquinolinas/farmacología , Animales , Antivirales/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Mol Ther ; 22(12): 2130-2141, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25189739

RESUMEN

Malaria, caused by protozoan Plasmodium parasites, remains a prevalent infectious human disease due to the lack of an efficient and safe vaccine. This is directly related to the persisting gaps in our understanding of the parasite's interactions with the infected host, especially during the clinically silent yet essential liver stage of Plasmodium development. Previously, we and others showed that genetically attenuated parasites (GAP) that arrest in the liver induce sterile immunity, but only upon multiple administrations. Here, we comprehensively studied hepatic gene and miRNA expression in GAP-injected mice, and found both a broad activation of IFNγ-associated pathways and a significant increase of murine microRNA-155 (miR-155), that was especially pronounced in non-parenchymal cells including liver-resident macrophages (Kupffer cells). Remarkably, ectopic upregulation of this miRNA in the liver of mice using robust hepatotropic adeno-associated virus 8 (AAV8) vectors enhanced GAP's protective capacity substantially. In turn, this AAV8-mediated miR-155 expression permitted a reduction of GAP injections needed to achieve complete protection against infectious parasite challenge from previously three to only one. Our study highlights a crucial role of mammalian miRNAs in Plasmodium liver infection in vivo and concurrently implies their great potential as future immune-augmenting agents in improved vaccination regimes against malaria and other diseases.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/administración & dosificación , Vacunas contra la Malaria/administración & dosificación , Malaria/prevención & control , MicroARNs/genética , ARN Mensajero/inmunología , Animales , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Hígado/metabolismo , Hígado/patología , Malaria/genética , Malaria/patología , Vacunas contra la Malaria/genética , Masculino , Ratones , MicroARNs/metabolismo , Plasmodium berghei/patogenicidad , Regulación hacia Arriba , Vacunas Atenuadas/genética
10.
PLoS Pathog ; 7(6): e1002080, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21698220

RESUMEN

Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission.


Asunto(s)
Malaria/transmisión , Movimiento/fisiología , Parásitos/fisiología , Plasmodium/fisiología , Piel/patología , Animales , Ambiente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Malaria/parasitología , Ratones , Ratones Endogámicos C57BL , Organismos Modificados Genéticamente , Parásitos/genética , Parásitos/metabolismo , Plasmodium/citología , Plasmodium/genética , Plasmodium/metabolismo , Piel/parasitología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
FASEB J ; 24(7): 2222-34, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20159960

RESUMEN

Adhesion of eukaryotic cells is a complex process during which interactions between extracellular ligands and cellular receptors on the plasma membrane modulate the organization of the cytoskeleton. Pathogens particularly rely often on adhesion to tissues or host cells in order to establish an infection. Here, we examined the adhesion of Plasmodium sporozoites, the motile form of the malaria parasite transmitted by the mosquito, to flat surfaces. Experiments using total internal reflection fluorescence microscopy and analysis of sporozoites under flow revealed a stepwise and developmentally regulated adhesion process. The sporozoite-specific transmembrane proteins TRAP and S6 were found to be important for initial adhesion. The structurally related protein TLP appears to play a specific role in adhesion under static conditions, as tlp(-) sporozoites move 4 times less efficiently than wild-type sporozoites. This likely reflects the decreased intradermal sporozoite movement of sporozoites lacking TLP. Further, these three sporozoite surface proteins also act in concert with actin filaments to organize efficient adhesion of the sporozoite prior to initiating motility and host cell invasion.


Asunto(s)
Adhesión Celular , Plasmodium/citología , Esporozoítos/citología , Animales , Culicidae/parasitología , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Perfusión , Unión Proteica , Proteínas Protozoarias/metabolismo , Propiedades de Superficie
12.
Front Immunol ; 12: 629185, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833755

RESUMEN

The WHO declared the COVID-19 outbreak a public health emergency of international concern. The causative agent of this acute respiratory disease is a newly emerged coronavirus, named SARS-CoV-2, which originated in China in late 2019. Exposure to SARS-CoV-2 leads to multifaceted disease outcomes from asymptomatic infection to severe pneumonia, acute respiratory distress and potentially death. Understanding the host immune response is crucial for the development of interventional strategies. Humoral responses play an important role in defending viral infections and are therefore of particular interest. With the aim to resolve SARS-CoV-2-specific humoral immune responses at the epitope level, we screened clinically well-characterized sera from COVID-19 patients with mild and severe disease outcome using high-density peptide microarrays covering the entire proteome of SARS-CoV-2. Moreover, we determined the longevity of epitope-specific antibody responses in a longitudinal approach. Here we present IgG and IgA-specific epitope signatures from COVID-19 patients, which may serve as discriminating prognostic or predictive markers for disease outcome and/or could be relevant for intervention strategies.


Asunto(s)
COVID-19/inmunología , Epítopos/inmunología , Proteoma/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Inmunidad Humoral , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Masculino
13.
Genome Med ; 13(1): 101, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127050

RESUMEN

BACKGROUND: Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). METHODS: We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. RESULTS: From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. CONCLUSIONS: Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Biología Computacional/métodos , Epítopos de Linfocito B/química , Epítopos de Linfocito T/química , Secuencia de Aminoácidos , Animales , COVID-19/virología , Vacunas contra la COVID-19/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Péptidos/química , Péptidos/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
14.
J Immunol ; 181(6): 3861-9, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18768840

RESUMEN

The purinoreceptor P2X7 is expressed on subsets of T cells and mediates responses of these cells to extracellular nucleotides such as ATP or NAD(+). We identified P2X7 as a molecule highly up-regulated on conventional CD8alphabeta(+) and unconventional CD8alphaalpha(+) T cells of the intestinal epithelium of mice. In contrast, CD8(+) T cells derived from spleen, mesenteric lymph nodes, and liver expressed only marginal levels of P2X7. However, P2X7 was highly up-regulated on CD8(+) T cells from spleen and lymph nodes when T cells were activated in the presence of retinoic acid. High P2X7 expression on intestinal CD8(+) T cells as well as on CD8(+) T cells incubated with retinoic acid resulted in enhanced sensitivity of cells to extracellular nucleotides. Both cell populations showed a high level of apoptosis following incubation with NAD(+) and the ATP derivative 2',3'-O-(benzoyl-4-benzoyl)-ATP, and injection of NAD(+) caused selective in vivo depletion of intestinal CD8(+) T cells. Following oral infection with Listeria monocytogenes, P2X7-deficient mice showed similar CD8(+) T cell responses in the spleen, but enhanced responses in the intestinal mucosa, when compared with similarly treated wild-type control mice. Overall, our observations define P2X7 as a new regulatory element in the control of CD8(+) T cell responses in the intestinal mucosa.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Linfocitos T CD8-positivos/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , NAD/administración & dosificación , Receptores Purinérgicos P2/fisiología , ADP Ribosa Transferasas/biosíntesis , ADP Ribosa Transferasas/fisiología , Adenosina Difosfato/administración & dosificación , Adenosina Difosfato/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/metabolismo , Relación Dosis-Respuesta Inmunológica , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NAD/farmacología , Receptores Purinérgicos P2/biosíntesis , Receptores Purinérgicos P2/deficiencia , Receptores Purinérgicos P2X7 , Subgrupos de Linfocitos T/enzimología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología
15.
NPJ Vaccines ; 5(1): 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32025341

RESUMEN

A vaccine remains a priority in the global fight against malaria. Here, we report on a single-center, randomized, double-blind, placebo and adjuvant-controlled, dose escalation phase 1a safety and immunogenicity clinical trial of full-length Plasmodium falciparum merozoite surface protein 1 (MSP1) in combination with GLA-SE adjuvant. Thirty-two healthy volunteers were vaccinated at least three times with MSP1 plus adjuvant, adjuvant alone, or placebo (24:4:4) to evaluate the safety and immunogenicity. MSP1 was safe, well tolerated and immunogenic, with all vaccinees sero-converting independent of the dose. The MSP1-specific IgG and IgM titers persisted above levels found in malaria semi-immune humans for at least 6 months after the last immunization. The antibodies were variant- and strain-transcending and stimulated respiratory activity in granulocytes. Furthermore, full-length MSP1 induced memory T-cells. Our findings encourage challenge studies as the next step to evaluate the efficacy of full-length MSP1 as a vaccine candidate against falciparum malaria (EudraCT 2016-002463-33).

16.
bioRxiv ; 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32577654

RESUMEN

There is an urgent need for a vaccine with efficacy against SARS-CoV-2. We hypothesize that peptide vaccines containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation would drive both humoral and cellular immunity with high specificity, potentially avoiding undesired effects such as antibody-dependent enhancement (ADE). Additionally, such vaccines can be rapidly manufactured in a distributed manner. In this study, we combine computational prediction of T cell epitopes, recently published B cell epitope mapping studies, and epitope accessibility to select candidate peptide vaccines for SARS-CoV-2. We begin with an exploration of the space of possible T cell epitopes in SARS-CoV-2 with interrogation of predicted HLA-I and HLA-II ligands, overlap between predicted ligands, protein source, as well as concurrent human/murine coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, viral source protein abundance, sequence conservation, coverage of high frequency HLA alleles and co-localization of CD4+ and CD8+ T cell epitopes. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering to select regions with surface accessibility, high sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. From 58 initial candidates, three B cell epitope regions were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we propose a set of SARS-CoV-2 vaccine peptides for use in subsequent murine studies and clinical trials.

17.
Eukaryot Cell ; 7(6): 1062-70, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18441124

RESUMEN

Efficient and specific host cell entry is of exquisite importance for intracellular pathogens. Parasites of the phylum Apicomplexa are highly motile and actively enter host cells. These functions are mediated by type I transmembrane invasins of the TRAP family that link an extracellular recognition event to the parasite actin-myosin motor machinery. We systematically tested potential parasite invasins for binding to the actin bridging molecule aldolase and complementation of the vital cytoplasmic domain of the sporozoite invasin TRAP. We show that the ookinete invasin CTRP and a novel, structurally related protein, termed TRAP-like protein (TLP), are functional members of the TRAP family. Although TLP is expressed in invasive stages, targeted gene disruption revealed a nonvital role during life cycle progression. This is the first genetic analysis of TLP, encoding a redundant TRAP family invasin, in the malaria parasite.


Asunto(s)
Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Fructosa-Bifosfato Aldolasa/metabolismo , Regulación de la Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Movimiento , Plasmodium berghei/citología , Plasmodium berghei/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/química
18.
Front Immunol ; 9: 1137, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892289

RESUMEN

Whole sporozoite vaccines represent one of the most promising strategies to induce protection against malaria. However, the development of efficient vaccination protocols still remains a major challenge. To understand how the generation of immunity is affected by variations in vaccination dosage and frequency, we systematically analyzed intrasplenic and intrahepatic CD8+ T cell responses following varied immunizations of mice with radiation-attenuated sporozoites. By combining experimental data and mathematical modeling, our analysis indicates a reversing role of spleen and liver in the generation of protective liver-resident CD8+ T cells during priming and booster injections: While the spleen acts as a critical source compartment during priming, the increase in vaccine-induced hepatic T cell levels is likely due to local reactivation in the liver in response to subsequent booster injections. Higher dosing accelerates the efficient generation of liver-resident CD8+ T cells by especially affecting their local reactivation. In addition, we determine the differentiation and migration pathway from splenic precursors toward hepatic memory cells thereby presenting a mechanistic framework for the impact of various vaccination protocols on these dynamics. Thus, our work provides important insights into organ-specific CD8+ T cell dynamics and their role and interplay in the formation of protective immunity against malaria.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Malaria/inmunología , Malaria/parasitología , Plasmodium/inmunología , Plasmodium/efectos de la radiación , Esporozoítos/inmunología , Esporozoítos/efectos de la radiación , Algoritmos , Animales , Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/metabolismo , Femenino , Interacciones Huésped-Patógeno/inmunología , Inmunización , Memoria Inmunológica , Inmunofenotipificación , Hígado/inmunología , Hígado/parasitología , Recuento de Linfocitos , Malaria/prevención & control , Ratones , Modelos Biológicos , Modelos Teóricos , Especificidad de Órganos/inmunología , Plasmodium berghei/inmunología , Bazo/inmunología , Bazo/parasitología , Vacunación
19.
Sci Rep ; 8(1): 3085, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449638

RESUMEN

Cerebral malaria is a life-threatening complication of Plasmodia infection and a major cause of child mortality in Sub-Saharan Africa. We report that protection from experimental cerebral malaria in the rodent model is obtained by a single intravenous or subcutaneous whole-parasite immunization. Whole-parasite immunization with radiation-attenuated sporozoites was equally protective as immunization with non-attenuated sporozoites under chemoprophylaxis. Both immunization regimens delayed the development of blood-stage parasites, but differences in cellular and humoral immune mechanisms were observed. Single-dose whole-parasite vaccination might serve as a relatively simple and feasible immunization approach to prevent life-threatening cerebral malaria.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Malaria Cerebral/prevención & control , Malaria Cerebral/parasitología , Plasmodium berghei/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Inyecciones Intravenosas , Inyecciones Subcutáneas , Vacunas contra la Malaria/inmunología , Malaria Cerebral/inmunología , Ratones , Ratones Endogámicos C57BL , Esporozoítos/inmunología
20.
PLoS One ; 13(5): e0197151, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29742141

RESUMEN

The ectoenzymes CD39 and CD73 degrade extracellular ATP to adenosine. ATP is released by stressed or damaged cells and provides pro-inflammatory signals to immune cells through P2 receptors. Adenosine, on the other hand, suppresses immune cells by stimulating P1 receptors. Thus, CD39 and CD73 can shape the quality of immune responses. Here we demonstrate that upregulation of CD39 is a consistent feature of activated conventional CD4+ and CD8+ T cells. Following stimulation in vitro, CD4+ and CD8+ T cells from human blood gained surface expression of CD39 but displayed only low levels of CD73. Activated human T cells from inflamed joints largely presented with a CD39+CD73- phenotype. In line, in spleens of mice with acute Listeria monocytogenes, listeria-specific CD4+ and CD8+ T cells acquired a CD39+CD73- phenotype. To test the function of CD39 in control of bacterial infection, CD39-deficient (CD39-/-) mice were infected with L. monocytogenes. CD39-/- mice showed better initial control of L. monocytogenes, which was associated with enhanced production of inflammatory cytokines. In the late stage of infection, CD39-/- mice accumulated more listeria-specific CD8+ T cells in the spleen than wildtype animals suggesting that CD39 attenuates the CD8+ T-cell response to infection. In conclusion, our results demonstrate that CD39 is upregulated on conventional CD4+ and CD8+ T cells at sites of acute infection and inflammation, and that CD39 dampens responses to bacterial infection.


Asunto(s)
Antígenos CD/inmunología , Apirasa/inmunología , Infecciones/genética , Inflamación/genética , Listeriosis/inmunología , Animales , Antígenos CD/genética , Apirasa/genética , Linfocitos T CD8-positivos/inmunología , Citometría de Flujo , Regulación de la Expresión Génica/inmunología , Humanos , Inmunidad Innata/genética , Infecciones/inmunología , Infecciones/microbiología , Inflamación/inmunología , Inflamación/microbiología , Listeria monocytogenes/inmunología , Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Activación de Linfocitos/genética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA