Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 29(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338422

RESUMEN

The fusion of penetrating peptides (PPs), e.g., cell penetration peptides (CPPs) or antimicrobial peptides (AMPs), together with antimicrobial agents is an expanding research field. Specific AMPs, such as lactoferricin B (LfcinB), have demonstrated strong antibacterial, antifungal, and antiparasitic activity, as well as valuable anticancer activity, proving beneficial in the development of anticancer conjugates. The resulting conjugates offer potential dual functionality, acting as both an anticancer and an antimicrobial agent. This is especially necessary in cancer treatment, where microbial infections pose a critical risk. Leukemic cells frequently exhibit altered outer lipid membranes compared to healthy cells, making them more sensitive to compounds that interfere with their membrane. In this study, we revisited and reanalyzed our earlier research on LfcinB and its conjugates. Furthermore, we carried out new experiments with a specific focus on cell proliferation, changes in membrane asymmetric phosphatidylserine location, intracellular reactive oxygen species (ROS) generation, mitochondrial functions, and in vitro bacterial topoisomerase inhibition.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Lactoferrina/farmacología , Lactoferrina/química , Antiinfecciosos/farmacología , Péptidos/química , Pruebas de Sensibilidad Microbiana
2.
Mol Pharmacol ; 105(1): 39-53, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977824

RESUMEN

Hematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin (CIP) or levofloxacin (LVX), with the cell-penetrating peptide transportan 10 (TP10). Here, we demonstrate that the resultant compounds display promising biologic activities in preclinical studies. These novel conjugates not only exhibit potent antimicrobial effects but are also selective against leukemia cells. The cytotoxic mechanism involves rapid disruption of cell membrane asymmetry leading to membrane damage. Importantly, these conjugates penetrated mammalian cells, accumulating within the nuclear membrane without significant effect on cellular architecture or mitochondrial function. Molecular simulations elucidated the aggregation tendencies of TP10 conjugates within lipid bilayers, resulting in membrane disruption and permeabilization. Moreover, mass spectrometry analysis confirmed efficient reduction of disulfide bonds within TP10 conjugates, facilitating release and activation of the fluoroquinolone derivatives. Intriguingly, these compounds inhibited human topoisomerases, setting them apart from traditional fluoroquinolones. Remarkably, TP10 conjugates generated lower intracellular levels of reactive oxygen species compared with CIP and LVX. The combination of antibacterial and antileukemic properties, coupled with selective cytostatic effects and minimal toxicity toward healthy cells, positions TP10 derivatives as promising candidates for innovative therapeutic approaches in the context of antileukemic HCT. This study highlights their potential in search of more effective leukemia treatments. SIGNIFICANCE STATEMENT: Fluoroquinolones are commonly used antibiotics, while transportan 10 (TP10) is a cell-penetrating peptide (CPP) with anticancer properties. In HCT, microbial infections are the primary cause of illness and death. Combining TP10 with fluoroquinolones enhanced their effects on different cell types. The dual pharmacological action of these conjugates offers a promising proof-of-concept solution for leukemic patients undergoing HCT. Strategically designed therapeutics, incorporating CPPs with antibacterial properties, have the potential to reduce microbial infections in the treatment of malignancies.


Asunto(s)
Antineoplásicos , Péptidos de Penetración Celular , Leucemia , Animales , Humanos , Fluoroquinolonas/farmacología , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Antineoplásicos/farmacología , Antibacterianos/farmacología , Leucemia/tratamiento farmacológico , Trasplante de Células , Mamíferos/metabolismo
3.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066491

RESUMEN

Poor efficiency of chemotherapeutics in the eradication of Cancer Stem Cells (CSCs) has been driving the search for more active and specific compounds. In this work, we show how cell density-dependent stage culture profiles can be used in drug development workflows to achieve more robust drug activity (IC50 and EC50) results. Using flow cytometry and light microscopy, we characterized the cytological stage profiles of the HL-60-, A-549-, and HEK-293-derived sublines with a focus on their primitive cell content. We then used a range of cytotoxic substances-C-123, bortezomib, idarubicin, C-1305, doxorubicin, DMSO, and ethanol-to highlight typical density-related issues accompanying drug activity determination. We also showed that drug EC50 and selectivity indices normalized to primitive cell content are more accurate activity measurements. We tested our approach by calculating the corrected selectivity index of a novel chemotherapeutic candidate, C-123. Overall, our study highlights the usefulness of accounting for primitive cell fractions in the assessment of drug efficiency.


Asunto(s)
Antineoplásicos/farmacología , Recuento de Células , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Humanos , Concentración 50 Inhibidora , Estadificación de Neoplasias , Especies Reactivas de Oxígeno/metabolismo
4.
Bioorg Chem ; 104: 104309, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33011532

RESUMEN

A new series of N-(aryl/heteroaryl)-2-chlorobenzenesulfonamide derivatives 4-21 have been synthesized, and evaluated at the National Cancer Institute (USA) for their in vitro activities against a panel of 60 different human cancer cell lines. Among them, compounds 16, 20 and 21 exhibited remarkable cytotoxic activity against numerous human cancer cell lines. We found that sulfonamide derivative 21 appeared to be more selective than compounds 16 and 20. In comparison to compounds 16 and 20 it showed higher cytotoxic activity against A549 non-small cell lung adenocarcinoma and HCT-116 colon carcinoma cells and was less toxic to HEK-293 human embryonic kidney cells and HaCaT immortalized human keratinocytes. Treatment of A549 and HCT-116 cells with compound 21 resulted in the G0/G1-cell cycle arrest with a concomitant increase in p53 and p21 protein levels. Moreover, compound 21 led to ATP depletion and disruption of the mitochondrial membrane potential in both studied cell lines. Our results suggest that 2,4-dichloro-N-(quinolin-8-yl and/or 1H-indazol-7-yl)benzenesulfonamides serve as novel promising anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Clorobencenos/farmacología , Sulfonamidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Clorobencenos/síntesis química , Clorobencenos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
5.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630159

RESUMEN

Seven conjugates composed of well-known fluoroquinolone antibacterial agents, ciprofloxacin (CIP) or levofloxacin (LVX), and a cell-penetrating peptide transportan 10 (TP10-NH2) were synthesised. The drugs were covalently bound to the peptide via an amide bond, methylenecarbonyl moiety, or a disulfide bridge. Conjugation of fluoroquinolones to TP10-NH2 resulted in congeners demonstrating antifungal in vitro activity against human pathogenic yeasts of the Candida genus (MICs in the 6.25 - 100 µM range), whereas the components were poorly active. The antibacterial in vitro activity of most of the conjugates was lower than the activity of CIP or LVX, but the antibacterial effect of CIP-S-S-TP10-NH2 was similar to the mother fluoroquinolone. Additionally, for two representative CIP and LVX conjugates, a rapid bactericidal effect was shown. Compared to fluoroquinolones, TP10-NH2 and the majority of its conjugates generated a relatively low level of reactive oxygen species (ROS) in human embryonic kidney cells (HEK293) and human myeloid leukemia cells (HL-60). The conjugates exhibited cytotoxicity against three cell lines, HEK293, HepG2 (human liver cancer cell line), and LLC-PK1 (old male pig kidney cells), with IC50 values in the 10 - 100 µM range and hemolytic activity. The mammalian toxicity was due to the intrinsic cytoplasmic membrane disruption activity of TP10-NH2 since fluoroquinolones themselves were not cytotoxic. Nevertheless, the selectivity index values of the conjugates, both for the bacteria and human pathogenic yeasts, remained favourable.


Asunto(s)
Antiinfecciosos/síntesis química , Antineoplásicos/síntesis química , Péptidos de Penetración Celular , Ciprofloxacina , Levofloxacino , Proteínas Recombinantes de Fusión , Animales , Antiinfecciosos/farmacología , Candida/efectos de los fármacos , Candida/metabolismo , Farmacorresistencia Bacteriana , Células HEK293 , Células HL-60 , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Porcinos
6.
Bioconjug Chem ; 29(9): 3060-3071, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30048118

RESUMEN

Three chimera peptides composed of bovine lactoferrampin and the analogue of truncated human neutrophil peptide 1 were synthesized by the solid-phase method. In two compounds peptide chains were connected via isopeptide bond, whereas in the third one disulfide bridge served as a linker. All three chimeras displayed significantly higher antimicrobial activity than the constituent peptides as well as their equimolar mixtures. The one with a disulfide bridge displayed selectivity toward Gram-positive bacteria and was able to penetrate bacterial cells. The chimeric peptides demonstrated low in vitro mammalian cytotoxicity, especially against benign cells. The significance of linker type was also reflected in the secondary structure and proteolytic stability of studied compounds. Presented results proved that such chimeras are good lead structures for designing antimicrobial drugs.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Lactoferrina/química , Fragmentos de Péptidos/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , alfa-Defensinas/química , Animales , Candida/efectos de los fármacos , Bovinos , Línea Celular Tumoral , Dicroismo Circular , Ensayos de Selección de Medicamentos Antitumorales , Colorantes Fluorescentes/química , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Secundaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
7.
Antioxidants (Basel) ; 12(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36979004

RESUMEN

The role of catechins in the epigenetic regulation of gene expression has been widely studied; however, if and how this phenomenon relates to the redox properties of these polyphenols remains unknown. Our earlier study demonstrated that exposure of the human colon adenocarcinoma HT29 cell line to these antioxidants affects the expression of redox-related genes. In particular, treatment with (-)-epigallocatechin (EGC) downregulated transcription of gene encoding sulfiredoxin-1 (SRXN1), the peroxidase involved in the protection of cells against hydrogen peroxide-induced oxidative stress. The aim of this study was to investigate whether the observed SRXN1 downregulation was accompanied by changes in the DNA methylation level of its promoter and, if so, whether it was correlated with the redox properties of catechins. The impact on DNA methylation profile in HT29 cells treated with different concentrations of five catechins, varying in chemical structures and standard reduction potentials as well as susceptibility to oxidation, was monitored by a methylation-sensitive high-resolution melting technique employing the SRXN1 promoter region as a model target. We demonstrated that catechins, indeed, are able to modulate DNA methylation of the SRXN1 gene in a redox-related manner. The nonlinear method in the statistical analysis made it possible to fish out two parameters (charge transfer in oxidation process Qox and time of electron transfer t), whose strong interactions correlated with observed modulation of DNA methylation by catechins. Based on these findings, we present a proof-of-concept that DNA methylation, which limits SRXN1 expression and thus restricts the multidirectional antioxidant action of SRXN1, may represent a mechanism protecting cells against reductive stress caused by particularly fast-reacting reductants such as EGC and (-)-epicatechin gallate (ECG) in our study.

8.
Peptides ; 117: 170079, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30959143

RESUMEN

Eight new peptide conjugates composed of modified bovine lactoferricin truncated analogues (LFcinB) and one of the three antimicrobials - ciprofloxacin (CIP), levofloxacin (LVX), and fluconazole (FLC) - were synthesized. Four different linkers were applied to connect a peptide and an antimicrobial agent. The FLC-containing peptidic conjugates were synthesized using the "click chemistry" method. This novel approach is reported here for the first time. Unlike their components, CIP- and LVX-based conjugates exerted activity against Candida yeast. Similarly to the constituent peptides, synthesized conjugates showed activity against Gram-positive bacteria, especially S. epidermidis. The most active were the conjugates containing CIP linked to the peptide by the redox-sensitive disulfide bridge. Our results show a significant role of a linker between antimicrobial agent and a peptide. This was also confirmed by the lack of synergistic effects on the antimicrobial activity of the constituent compounds. Moreover, cytotoxicity assays revealed that the proposed conjugates cause a comparatively low cytotoxic effect in reference to antibiotics widely used in therapies. Therefore, they can be deliberated as attractive leading structures for the development of drugs.


Asunto(s)
Antiinfecciosos , Candida/crecimiento & desarrollo , Lactoferrina , Péptidos , Staphylococcus epidermidis/crecimiento & desarrollo , Células A549 , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Evaluación Preclínica de Medicamentos , Células HEK293 , Células HL-60 , Humanos , Lactoferrina/química , Lactoferrina/farmacología , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología
9.
Stem Cells Dev ; 27(7): 488-513, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29431006

RESUMEN

Proliferation and expansion of leukemia is driven by leukemic stem cells (LSCs). Multidrug resistance (MDR) of LSCs is one of the main reasons of failure and relapses in acute myeloid leukemia (AML) treatment. In this study, we show that maintaining HL-60 at low cell culture density or applying a 240-day treatment with anthrapyridazone (BS-121) increased the percentage of primitive cells, which include LSCs determining the overall stage profile. This change manifested in morphology, expression of both cell surface markers and redox-state proteins, as well as mitochondrial potential. Moreover, four sublines were generated, each with unique and characteristic stage profile and cytostatic sensitivity. Cell density-induced culture alterations (affecting stage profiles) were exploited in a screen of anthrapyridazones. Among the compound tested, C-123 was the most potent against primitive cell stages while generating relatively low amounts of reactive oxygen species (ROS). Furthermore, it had low toxicity in vivo and weakly affected blood morphology of healthy mice. The cell density-dependent stage profiles could be utilized in preliminary drug screens for activity against LSCs or in construction of patient-specific platforms to find drugs effective in case of AML relapse (drug extrapolation). The correlation between ROS generation in differentiated cells and toxic effect observed in HL-60 has a potential application in myelotoxicity predictions. The discovered properties of C-123 indicate its potential application in AML treatment, specifically in conditioned myeloablation preceding allogeneic transplantation and/or ex vivo treatment preceding autologous transplantation.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Citostáticos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Enfermedad Aguda , Animales , Recuento de Células , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citostáticos/química , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Células HL-60 , Humanos , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Especies Reactivas de Oxígeno/metabolismo
10.
Oncotarget ; 8(62): 105137-105154, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29285240

RESUMEN

Anthrapyridazones, imino analogues of anthraquinone, constitute a family of compounds with remarkable anti-cancer activity. To date, over 20 derivatives were studied, of which most displayed nanomolar cytotoxicity towards broad spectrum of cancer cells, including breast, prostate and leukemic ones. BS-154, the most potent derivative, had IC50 values close to 1 nM, however, it was toxic in animal studies. Here, we characterize another anthrapyridazone, PDZ-7, which retains high cytotoxicity while being well tolerated in mice. PDZ-7 is also active in vivo against anthracycline-resistant tumor in a mouse xenograft model and induces DNA damage in proliferating cells, preferentially targeting cells in S and G2 phases of the cell cycle. Activation of Mre11-Rad50-Nbs1 (MRN) complex and phosphorylation of H2AX suggest double-stranded DNA breaks as a major consequence of PDZ-7 treatment. Consistent with this, PDZ-7 treatment blocked DNA synthesis and resulted in cell cycle arrest in late S and G2 phases. Analysis of topoisomerase IIα activity and isolation of the stabilized covalent topoisomerase IIα - DNA complex in the presence of PDZ-7 suggests that this compound is a topoisomerase IIα poison. Moreover, PDZ-7 interfered with actin polymerization, thereby implying its action as a dual inhibitor of processes critical for dividing cells. Using nuclear magnetic resonance (NMR) spectroscopy we show that PDZ-7 interacts with DNA double helix and quadruplex DNA structure. Taken together, our results suggest that PDZ-7 is a unique compound targeting actin cytoskeleton and DNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA