Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Hum Mol Genet ; 22(7): 1348-57, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23263864

RESUMEN

Loss of expression of the methylation-controlled J gene, MCJ (DNAJC15), is observed in cases of several tumors and plays a crucial role in the chemoresistance of ovarian cancer cells. Aside from the pathophysiological effects, almost nothing is known about the cellular function of MCJ. Here, we provide the first evidence that MCJ acts in the biogenesis of mitochondria. Our results demonstrate that MCJ is located in mitochondria. It is anchored in the mitochondrial inner membrane with the C-terminal J domain facing the matrix space. We show that MCJ forms a stable subcomplex with a component of the mitochondrial import motor, MAGMAS, a protein overexpressed in cells treated with granulocyte-macrophage colony-stimulating factor and in prostate carcinomas. In addition, MCJ and MAGMAS interact with the core components of the TIM23 pre-protein translocase. We demonstrate that the recombinant soluble MCJ domain stimulates the ATPase activity of the human mtHsp70 chaperone, mortalin, the central component of the import motor of the TIM23 translocase. This stimulation is counteracted by MAGMAS. Moreover, pre-protein import into mitochondria is impaired in the absence of MCJ. Interestingly, MCJ is able to take over the function of Tim14, the essential J co-chaperone of the mitochondrial protein import motor in yeast. In summary, our results show that MCJ functions as J co-chaperone of the human TIM23 pre-protein translocase, suggesting a link between mitochondrial pre-protein import and tumorigenesis.


Asunto(s)
Proteínas del Choque Térmico HSP40/fisiología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Prueba de Complementación Genética , Proteínas del Choque Térmico HSP40/química , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Proteínas de Transporte de Membrana/genética , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 288(4): 2676-88, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23233680

RESUMEN

Mia40 and the sulfhydryl:cytochrome c oxidoreductase Erv1/ALR are essential for oxidative protein import into the mitochondrial intermembrane space in yeast and mammals. Although mitochondrial protein import is functionally conserved in the course of evolution, many organisms seem to lack Mia40. Moreover, except for in organello import studies and in silico analyses, nothing is known about the function and properties of protist Erv homologues. Here we compared Erv homologues from yeast, the kinetoplastid parasite Leishmania tarentolae, and the non-related malaria parasite Plasmodium falciparum. Both parasite proteins have altered cysteine motifs, formed intermolecular disulfide bonds in vitro and in vivo, and could not replace Erv1 from yeast despite successful mitochondrial protein import in vivo. To analyze its enzymatic activity, we established the expression and purification of recombinant full-length L. tarentolae Erv and compared the mechanism with related and non-related flavoproteins. Enzyme assays indeed confirmed an electron transferase activity with equine and yeast cytochrome c, suggesting a conservation of the enzymatic activity in different eukaryotic lineages. However, although Erv and non-related flavoproteins are intriguing examples of convergent molecular evolution resulting in similar enzyme properties, the mechanisms of Erv homologues from parasitic protists and opisthokonts differ significantly. In summary, the Erv-mediated reduction of cytochrome c might be highly conserved throughout evolution despite the apparent absence of Mia40 in many eukaryotes. Nevertheless, the knowledge on mitochondrial protein import in yeast and mammals cannot be generally transferred to all other eukaryotes, and the corresponding pathways, components, and mechanisms remain to be analyzed.


Asunto(s)
Reductasas del Citocromo/química , Citocromos c/química , Proteínas Mitocondriales/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/fisiología , Oxidorreductasas/química , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Animales , Linaje de la Célula , Biología Computacional/métodos , Electrones , Prueba de Complementación Genética , Cinética , Kinetoplastida/metabolismo , Leishmania , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Plasmodium/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
3.
J Cell Biol ; 179(3): 389-95, 2007 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-17967948

RESUMEN

All proteins of the intermembrane space of mitochondria are encoded by nuclear genes and synthesized in the cytosol. Many of these proteins lack presequences but are imported into mitochondria in an oxidation-driven process that relies on the activity of Mia40 and Erv1. Both factors form a disulfide relay system in which Mia40 functions as a receptor that transiently interacts with incoming polypeptides via disulfide bonds. Erv1 is a sulfhydryl oxidase that oxidizes and activates Mia40, but it has remained unclear how Erv1 itself is oxidized. Here, we show that Erv1 passes its electrons on to molecular oxygen via interaction with cytochrome c and cytochrome c oxidase. This connection to the respiratory chain increases the efficient oxidation of the relay system in mitochondria and prevents the formation of toxic hydrogen peroxide. Thus, analogous to the system in the bacterial periplasm, the disulfide relay in the intermembrane space is connected to the electron transport chain of the inner membrane.


Asunto(s)
Disulfuros/metabolismo , Transporte de Electrón , Animales , Reductasas del Citocromo/metabolismo , Relación Dosis-Respuesta a Droga , Complejo IV de Transporte de Electrones/metabolismo , Caballos , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Oxígeno/química , Oxígeno/metabolismo , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 285(7): 4423-31, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20007714

RESUMEN

The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Delta hep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , ATPasas Transportadoras de Calcio/genética , Inmunoprecipitación , Modelos Biológicos , Chaperonas Moleculares/genética , Unión Proteica , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/genética
5.
EMBO Rep ; 9(11): 1107-13, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18787558

RESUMEN

A disulphide relay system mediates the import of cysteine-containing proteins into the intermembrane space of mitochondria. This system consists of two essential proteins, Mia40 and Erv1, which bind to newly imported proteins by disulphide transfer. A third component, Hot13, was proposed to be important in the biogenesis of cysteine-rich proteins of the intermembrane space, but the molecular function of Hot13 remained unclear. Here, we show that Hot13, a conserved zinc-binding protein, interacts functionally and physically with the import receptor Mia40. It improves the Erv1-dependent oxidation of Mia40 both in vivo and in vitro. As a consequence, in mutants lacking Hot13, the import of substrates of Mia40 is impaired, particularly in the presence of zinc ions. In mitochondria as well as in vitro, Hot13 can be functionally replaced by zinc-binding chelators. We propose that Hot13 maintains Mia40 in a zinc-free state, thereby facilitating its efficient oxidation by Erv1.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia
6.
Nature ; 426(6968): 862-6, 2003 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-14685243

RESUMEN

The outer membranes of mitochondria and chloroplasts are distinguished by the presence of beta-barrel membrane proteins. The outer membrane of Gram-negative bacteria also harbours beta-barrel proteins. In mitochondria these proteins fulfil a variety of functions such as transport of small molecules (porin/VDAC), translocation of proteins (Tom40) and regulation of mitochondrial morphology (Mdm10). These proteins are encoded by the nucleus, synthesized in the cytosol, targeted to mitochondria as chaperone-bound species, recognized by the translocase of the outer membrane, and then inserted into the outer membrane where they assemble into functional oligomers. Whereas some knowledge has been accumulated on the pathways of insertion of proteins that span cellular membranes with alpha-helical segments, very little is known about how beta-barrel proteins are integrated into lipid bilayers and assembled into oligomeric structures. Here we describe a protein complex that is essential for the topogenesis of mitochondrial outer membrane beta-barrel proteins (TOB). We present evidence that important elements of the topogenesis of beta-barrel membrane proteins have been conserved during the evolution of mitochondria from endosymbiotic bacterial ancestors.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Neurospora crassa/metabolismo , Dicroismo Circular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Sustancias Macromoleculares , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neurospora crassa/química , Neurospora crassa/citología , Unión Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
Trends Biochem Sci ; 30(4): 205-11, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15817397

RESUMEN

All proteins of the intermembrane space (IMS) of mitochondria are synthesized in the cytosol. The mechanisms by which these polypeptides are transported into the IMS are strikingly different from other protein-translocation processes in the cell. Recent studies suggest that IMS proteins reach their destination by three alternative principles that differ in the energy sources employed to drive the translocation reactions. The first class of proteins uses both hydrolysis of matrix ATP and the electrochemical potential of the inner membrane. The second class depends on the energy gain of protein folding, and the third on the association of the proteins to high-affinity binding sites in the IMS.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas/fisiología , Adenosina Trifosfato/metabolismo , Potenciales de la Membrana/fisiología , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Unión Proteica , Pliegue de Proteína
8.
Biochim Biophys Acta ; 1783(4): 601-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18179776

RESUMEN

The compartment between the outer and the inner membranes of mitochondria, the intermembrane space (IMS), harbours a variety of proteins that contain disulfide bonds. Many of these proteins possess a conserved twin Cx(3)C motif or twin Cx(9)C motif. Recently, a disulfide relay system in the IMS has been identified which consists of two essential components, the sulfhydryl oxidase Erv1 and the redox-regulated import receptor Mia40/Tim40. The disulfide relay system drives the import of these cysteine-rich proteins into the IMS of mitochondria by an oxidative folding mechanism. In order to enable Mia40 to perform the oxidation of substrate proteins, the sulfhydryl oxidase Erv1 mediates the oxidation of Mia40 in a disulfide transfer reaction. To recycle Erv1 into its oxidized form, electrons are transferred to cytochrome c connecting the disulfide relay system to the electron transport chain of mitochondria. Despite the lack of homology of the components, the disulfide relay system in the IMS resembles the oxidation system in the periplasm of bacteria presumably reflecting the evolutionary origin of the IMS from the bacterial periplasm.


Asunto(s)
Reductasas del Citocromo/fisiología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/metabolismo , Animales , Citocromos c/metabolismo , Disulfuros/metabolismo , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Pliegue de Proteína
9.
J Cell Biol ; 165(2): 167-73, 2004 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-15096522

RESUMEN

Mitochondrial morphology and inheritance of mitochondrial DNA in yeast depend on the dynamin-like GTPase Mgm1. It is present in two isoforms in the intermembrane space of mitochondria both of which are required for Mgm1 function. Limited proteolysis of the large isoform by the mitochondrial rhomboid protease Pcp1/Rbd1 generates the short isoform of Mgm1 but how this is regulated is unclear. We show that near its NH2 terminus Mgm1 contains two conserved hydrophobic segments of which the more COOH-terminal one is cleaved by Pcp1. Changing the hydrophobicity of the NH2-terminal segment modulated the ratio of the isoforms and led to fragmentation of mitochondria. Formation of the short isoform of Mgm1 and mitochondrial morphology further depend on a functional protein import motor and on the ATP level in the matrix. Our data show that a novel pathway, to which we refer as alternative topogenesis, represents a key regulatory mechanism ensuring the balanced formation of both Mgm1 isoforms. Through this process the mitochondrial ATP level might control mitochondrial morphology.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Unión al GTP/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Motoras Moleculares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP/genética , Humanos , Proteínas Mitocondriales/genética , Modelos Moleculares , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Serina Endopeptidasas
10.
Nat Struct Mol Biol ; 11(3): 234-41, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14981506

RESUMEN

Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Motoras Moleculares/metabolismo , Unión Proteica , Precursores de Proteínas/metabolismo , Transporte de Proteínas
11.
Redox Biol ; 15: 363-374, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29310075

RESUMEN

Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErvC17S. Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies.


Asunto(s)
Leishmaniasis/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Proteínas Protozoarias/genética , Proteínas de Saccharomyces cerevisiae/genética , Animales , Cisteína/genética , Modelos Animales de Enfermedad , Humanos , Leishmania/genética , Leishmania/patogenicidad , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Dominios Proteicos , Pliegue de Proteína , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/genética
12.
FEBS Lett ; 581(6): 1098-102, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17336303

RESUMEN

The thiol oxidase Erv1 and the redox-regulated receptor Mia40/Tim40 are components of a disulfide relay system which mediates import of proteins into the intermembrane space (IMS) of mitochondria. Here we report that Erv1 requires Mia40 for its import into mitochondria. After passage across the translocase of the mitochondrial outer membrane Erv1 interacts via disulfide bonds with Mia40. Erv1 does not contain twin "CX(3)C" or twin "CX(9)C" motifs which are crucial for import of typical substrates of this pathway and it does not need two "CX(2)C" motifs for import into mitochondria. Thus, Erv1 represents an unusual type of substrate of the Mia40-dependent import pathway.


Asunto(s)
Reductasas del Citocromo/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Secuencias de Aminoácidos , Disulfuros , Humanos , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Transporte de Proteínas
13.
J Mol Biol ; 353(3): 517-28, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16185709

RESUMEN

A first component involved in import into the mitochondrial intermembrane space, named Mia40, has been described recently in yeast. Here, we identified the human MIA40 as a novel and ubiquitously expressed component of human mitochondria. It belongs to a novel protein family whose members share six highly conserved cysteine residues constituting a -CXC-CX9C-CX9C- motif. Human MIA40 is significantly smaller than the fungal protein and lacks the N-terminal extension including a transmembrane region and mitochondrial targeting signal. It forms soluble complexes within the intermembrane space of human mitochondria. Depletion of MIA40 in human cells by RNA interference specifically affected steady-state levels of small and cysteine-containing intermembrane space proteins like DDP1 and TIM10A, suggesting that MIA40 acts along the import pathway into the intermembrane space. Studies on the in vivo redox state of human MIA40 demonstrated that it contains intramolecular disulfide bonds. Thiol-trapping assays revealed the co-existence of different oxidation states of human MIA40 within the cell. Furthermore, we show that the twin -CX9C- motif is specifically required for import and stability of MIA40 in mitochondria. Partial mutation of this motif affects stable accumulation of MIA40 in the intermembrane space, whereas mutation of all cysteine residues in this motif inhibits import in mitochondria. Taken together, we conclude that the biogenesis and function of MIA40 in the mitochondrial intermembrane space is dependent on redox processes involving conserved cysteine residues.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Mutación , Secuencia de Aminoácidos , Secuencia de Bases , Cromatografía en Gel , Cartilla de ADN , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Transporte de Proteínas , Homología de Secuencia de Aminoácido
14.
FEBS Lett ; 579(1): 179-84, 2005 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-15620710

RESUMEN

Many proteins located in the intermembrane space (IMS) of mitochondria are characterized by a low molecular mass, contain highly conserved cysteine residues and coordinate metal ions. Studies on one of these proteins, Tim13, revealed that net translocation across the outer membrane is driven by metal-dependent folding in the IMS . We have identified an essential component, Mia40/Tim40/Ykl195w, with a highly conserved domain in the IMS that is able to bind zinc and copper ions. In cells lacking Mia40, the endogenous levels of Tim13 and other metal-binding IMS proteins are strongly reduced due to the impaired import of these proteins. Furthermore, Mia40 directly interacts with newly imported Tim13 protein. We conclude that Mia40 is the first essential component of a specific translocation pathway of metal-binding IMS proteins.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos/genética , Extractos Celulares/química , Secuencia Conservada/genética , Cobre/metabolismo , Membranas Intracelulares/metabolismo , Iones/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/análisis , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Eliminación de Secuencia/genética , Zinc/metabolismo
15.
J Cell Biol ; 199(1): 125-35, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23007651

RESUMEN

Chaperones mediate protein folding and prevent deleterious protein aggregation in the cell. However, little is known about the biogenesis of chaperones themselves. In this study, we report on the biogenesis of the yeast mitochondrial Hsp70 (mtHsp70) chaperone, which is essential for the functionality of mitochondria. We show in vivo and in organello that mtHsp70 rapidly folds after its import into mitochondria, with its ATPase domain and peptide-binding domain (PBD) adopting their structures independently of each other. Importantly, folding of the ATPase domain but not of the PBD was severely affected in the absence of the Hsp70 escort protein, Hep1. We reconstituted the folding of mtHsp70, demonstrating that Hep1 and ATP/ADP were required and sufficient for its de novo folding. Our data show that Hep1 bound to a folding intermediate of mtHsp70. Binding of an adenine nucleotide triggered release of Hep1 and folding of the intermediate into native mtHsp70. Thus, Hep1 acts as a specialized chaperone mediating the de novo folding of an Hsp70 chaperone.


Asunto(s)
Proteínas HSP70 de Choque Térmico/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Mol Biol Cell ; 22(20): 3758-67, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21865601

RESUMEN

The copper chaperone for superoxide dismutase 1 (Ccs1) provides an important cellular function against oxidative stress. Ccs1 is present in the cytosol and in the intermembrane space (IMS) of mitochondria. Its import into the IMS depends on the Mia40/Erv1 disulfide relay system, although Ccs1 is, in contrast to typical substrates, a multidomain protein and lacks twin Cx(n)C motifs. We report on the molecular mechanism of the mitochondrial import of Saccharomyces cerevisiae Ccs1 as the first member of a novel class of unconventional substrates of the disulfide relay system. We show that the mitochondrial form of Ccs1 contains a stable disulfide bond between cysteine residues C27 and C64. In the absence of these cysteines, the levels of Ccs1 and Sod1 in mitochondria are strongly reduced. Furthermore, C64 of Ccs1 is required for formation of a Ccs1 disulfide intermediate with Mia40. We conclude that the Mia40/Erv1 disulfide relay system introduces a structural disulfide bond in Ccs1 between the cysteine residues C27 and C64, thereby promoting mitochondrial import of this unconventional substrate. Thus the disulfide relay system is able to form, in addition to double disulfide bonds in twin Cx(n)C motifs, single structural disulfide bonds in complex protein domains.


Asunto(s)
Cisteína , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Transporte de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Cisteína/química , Cisteína/metabolismo , Citosol/metabolismo , Disulfuros/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Plásmidos , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Transducción Genética
17.
J Biochem ; 146(5): 599-608, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19720617

RESUMEN

Proteins of the intermembrane space (IMS) of mitochondria fulfil crucial functions in cellular processes, such as transport of proteins and metal ions, ATP production and apoptotic cell death. All IMS proteins are synthesized in the cytosol and then transported across the mitochondrial outer membrane. A subset of these proteins contains disulphide bonds. For their import into the IMS, they employ a disulphide relay system, made up of two essential proteins, Mia40/Tim40 and the flavin-dependent sulfhydryl-electron transferase Erv1. The disulphide relay system introduces disulphide bonds in substrate proteins triggering their folding. The oxidative folding traps substrates in the IMS and thereby drives their net import into the IMS. Thus, protein import is coupled to oxidative protein folding, maybe providing a first control of protein quality. Here, we review the current knowledge about the Erv1-Mia40 system and address aspects that require further consideration.


Asunto(s)
Disulfuros/metabolismo , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
18.
J Mol Biol ; 385(2): 331-8, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19010334

RESUMEN

Cells protect themselves against oxygen stress and reactive oxygen species. An important enzyme in this process is superoxide dismutase, Sod1, which converts superoxide radicals into water and hydrogen peroxide. The biogenesis of functional Sod1 is dependent on its copper chaperone, Ccs1, which introduces a disulfide bond and a copper ion into Sod1. Ccs1 and Sod1 are present in the cytosol but are also found in the mitochondrial intermembrane space (IMS), the compartment between the outer and the inner membrane of mitochondria. Ccs1 mediates mitochondrial localization of Sod1. Here, we report on the biogenesis of the fractions of Ccs1 and Sod1 present in mitochondria of Saccharomyces cerevisiae. The IMS of mitochondria harbors a disulfide relay system consisting of the import receptor Mia40 and the thiol oxidase Erv1, which drives the import of substrates with conserved cysteine residues arranged in typical twin Cx(3)C and twin Cx(9)C motifs. We show that depletion of Mia40 results in decreased levels of Ccs1 and Sod1. On the other hand, overexpression of Mia40 increased the mitochondrial fraction of both proteins. In addition, the import rates of Ccs1 were enhanced by increased levels of Mia40 and reduced upon depletion of Mia40. Mia40 forms mixed disulfides with Ccs1, suggesting a role of Mia40 for the generation of disulfide bonds in Ccs1. We suggest that the disulfide relay system transfers disulfide bonds via Mia40 to Ccs1, which then shuttles disulfide bonds to Sod1. In conclusion, the disulfide relay system is crucial for the import of Ccs1, thereby affecting the transport of Sod1, and it can control the distribution of Ccs1 and Sod1 between the IMS of mitochondria and the cytosol.


Asunto(s)
Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/metabolismo , Disulfuros/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Transporte de Proteínas , Superóxido Dismutasa-1
19.
J Biol Chem ; 284(3): 1353-63, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19011240

RESUMEN

Oxidative folding drives the import of proteins containing twin CXnC motifs into the intermembrane space of mitochondria. This import pathway employs a disulfide relay system whose key components are the redox-regulated import receptor Mia40 and the thiol oxidase Erv1. Mia40 contains six cysteine residues in a CPC-CX9C-CX9C arrangement in a highly conserved domain. We show that this domain is sufficient for the function of Mia40. By analysis of Mia40 cysteine mutants we demonstrate that the cysteine residues have distinct roles and are not equally important for Mia40 function. The second cysteine residue is essential for viability of yeast cells. It is required for the interaction of Mia40 with Erv1 in a disulfide intermediate and forms a redox-sensitive disulfide bond with the first cysteine residue. Both cysteine residues are required for the oxidation of the substrate, Tim10, in a reconstituted system comprised of Mia40 and Erv1. Mutants with amino acid exchanges in the third and sixth cysteine residues have severe defects in growth and in the import of intermembrane space proteins. These Mia40 variants are not tightly folded. We conclude that the cysteine residues of the twin CX9C motif have a structural role and stabilize Mia40. In particular, the disulfide bond formed by the third and sixth cysteine residues apparently supports a conformation crucial for the function of Mia40. Furthermore, the disulfide bond in the CPC segment mediates the redox reactions with the thiol oxidase Erv1 and substrate proteins in mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos/fisiología , Sustitución de Aminoácidos , Cisteína/genética , Cisteína/metabolismo , Disulfuros/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Mutación , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
J Biol Chem ; 284(8): 4865-72, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19017642

RESUMEN

The TIM23 complex is the major translocase of the mitochondrial inner membrane responsible for the import of essentially all matrix proteins and a number of inner membrane proteins. Tim23 and Tim50, two essential proteins of the complex, expose conserved domains into the intermembrane space that interact with each other. Here, we describe in vitro reconstitution of this interaction using recombinantly expressed and purified intermembrane space domains of Tim50 and Tim23. We established two independent methods, chemical cross-linking and surface plasmon resonance, to track their interaction. In addition, we identified mutations in Tim23 that abolish its interaction with Tim50 in vitro. These mutations also destabilized the interaction between the two proteins in vivo, leading to defective import of preproteins via the TIM23 complex and to cell death at higher temperatures. This is the first study to describe the reconstitution of the Tim50-Tim23 interaction in vitro and to identify specific residues of Tim23 that are vital for the interaction with Tim50.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mitocondrias/química , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA